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as follows:

Muitiply By To Obtain

feet 0.3048 meters
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1‘ Introduction

Background

The U.S. Army Corps of Engineers is planning to replace the existing lock at
the Inner Harbor Navigation Canal (IHNC) in New Orleans, LA (Figure 1). This
lock replacement project is considered critical to the Nation’s commerce. The
replacement lock is the No. 2 priority project in the Inland Waterway System
(IWS) following the Olmsted Navigation Project on the Ohio River, which is
currently under construction. The THNC lock is the busiest in the IWS with an
estimated average wait to lock through of 10 hr.

The IHNC is a major navigation artery linking the Mississippi River, Gulf
Intracoastal Waterway (GIWW), Mississippi River-Gulf Qutlet, and Lake
Ponchartrain. The existing 675- by 75-ft' lock with a floor elevation® of -36 will
be replaced with the new larger lock with dimensions of 1,270 ft by 110 ft and a
floor el of -40, which will reduce navigation delays to a minimum. The new lock
is designed for a maximum lift of 19.6 ft and will be located a short distance north
of the existing lock. The area where the lock will be constructed is mostly open
water, which will reduce excavation and minimize the impact to land areas.

The Prototype

The existing lock contains a side port filling and emptying system with two
sets of miter gates on each end since the project is subject to reverse heads. The
canal is about 425 ft wide and 35 ft deep. Flow is minimal just north of the
existing lock and consists primarily of lockage flows and tidal flows in the lake.
The project is impacted to the south by water levels on the Mississippi River and
to the north by tidal influences and surges from the Gulf of Mexico.

! A table of factors for converting non-SI units of measurement to SI (metric) units is
found on page vii.

2 All elevations (el) cited herein are in feet referred to the National Geodetic Vertical
Datum (NGVD).

Chapter 1 Introduction




ARKANGSAS

1
I_l

h VICKSBURG

¥
v wwﬂ'm
PhEis

3
_ e
AN

ALEXANDRIA

TEXAS

- - ———
- — -—

] ML OF WORK—
/LOULS IAN A\giron rouce !

%  PONTOfAR »u /
%, 52,
) & N\ ) G
P/ QQ) . B\ GriRanaS—

_ (MORGAN CITY .
# ';.‘

LAKE CHARLES

3
R

, e

¢ vy 7 0 Q "
4 r . ) )
M BE X1 ¢o
VICINITY MAP
.SCALE OF ‘MILES
40 0 cAG  BO o 920 180 200

Figure 1. Vicinity map

The replacement lock will serve as the line of protection from Mississippi
River floods, and elevations must provide protection to the Mississippi River and
Tributaries (MR&T) Project design flow line standards. The MR&T Project
design flood flow line at the IHNC lock site is el 17.6. The authorized freeboard
is 4.8 fi; therefore, the embankment grade must be el 22.4. To the north, the
predominant threat from flooding is a hurricane surge. The project features must
therefore provide the level of protection associated with the Lake Ponchartrain
and Vicinity Project. Design stages for this project are based on a Standard
Project Hurricane producing a stage of el 13.0 at the IHNC lock site. A freeboard
of 1.0 ft is added to this design surge level to obtain net embankment grades.

The maximum differential head for hydraulic design purposes is based on the
occurrence of a project design flood flow line of el 17.6 on the Mississippi River
concurrent with the observed historical minimum el of —2.0 on the north side of
the lock. This produces a maximum normal design head of 19.6 ft. The
maximum reverse differential head is based on the minimum historical stage of el
—1.6 on the Mississippi River at Carrollton, LA, concurrent with the project
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design hurricane stage of el 13.0. This produces a maximum design reverse head
of 14.6 ft.

Purpose and Scope

The initial design proposed for the model investigation was a 1,360-ft-long
(pintle to pintle) by 110-ft-wide end filling sector-gated system. This design was
designated the Type 1 design. Additional length was added to the standard pintle-
to-pintle length for a 1,200-ft lock to allow a buffer area for the end filling system.
During the planning for the model investigation, the U.S. Army Engineer District,
New Orleans, and the U.S. Army Engineer Research and Development Center
(ERDC) decided to incorporate the side port filling and emptying system into the
model along with the end filling system. As will be discussed subsequently, the
Type 1 design was modified during the study by shortening the chamber and
changing the intake and outlet designs. The lock with these modifications was

designated the Type 2 design. The objectives of the model investigation were as
follows: -

a. Determine the filling and emptying times for various valve speeds for lifts
upto 19.6 ft.

b. Determine hawser forces on barges and a ship in the chamber for varying
operating conditions.

c¢. Determine intake and outlet performance.
Determine pintle torque loads on the sector gates.

e. Make modifications if necessary to improve hydraulic performance.

A laboratory model was used to evaluate the performance of the filling and
emptying system. Model studies of lock filling and emptying systems designed for
barge traffic have targeted maximum hawser forces of 5 tons as a design
objective. System design and operation are optimized such that a full tow at
design draft produces hawser forces of 5 tons or less during lock operations at the
design pool conditions. This limiting maximum hawser force guidance is
provided in paragraph 8-6 of Engineer Manual (EM) 1110-2-2602 (Headquarters,
U.S. Army Corps of Engineers (HQUSACE) 1995), paragraph E-2 of EM 1110-
2-1604 (HQUSACE 1995), and also in the discussion of permissible filling times
in paragraph D-15 of EM 1110-2-1604. Davis (1989) summarizes the findings of
physical model studies:

“In working with models to determine hawser stresses, it
must be noted that when a hawser stress of only 5 tons is
achieved in a model it does not necessarily follow that the hawser
stress on the prototype lock will be no greater than the value
measured in the model. On a performance basis it has been found
that when the model hawser stress is no greater than 5 tons, the

prototype lock will perform very well and no surging or severe
turbulence will occur.”

Chapter1  Introduction 3




Criteria for hawser forces as stated in EM 1110-2-1604 indicate that for a
ship of 50,000 tons, the forces should not exceed 10 tons and for a ship of
170,000 tons, the hawser force should not exceed 25 tons. The ship weight for
this study was 85,000 tons, and interpolation of the guidance would give
maximum hawser forces not to exceed 15 tons for this size vessel.

Chapter 1 Introduction




2 Physical Model

Description

The 1:25-scale model reproduced approximately 800 ft of the upper and lower
approaches, the intakes and outlets, the sector gates, and the side port filling and
emptying system. The model layout is shown in Plate 1. The model was located
in a concrete block flume approximately 150 ft long by 40 ft wide with 4-f-high
walls. Dry-bed views of the model are shown in Figures 2-4. Figure 2a is a view
of the model looking from the Mississippi River side toward Lake Pontchartrain.
The lock intakes for the side port system can be seen off the sides of the approach
walls. The normal head (also referred to as direct head) exists when the
Mississippi River stages are higher than the lake stages. Reverse head exists
when the lake stages are higher than the river stages. “Looking downstream” in
this report refers to river stages higher than lake stages. A view of the model
looking from the lakeside toward the river is shown in Figure 2b. The discharge
outlets for the side port system are identical to the intakes and can be seen off to
the sides of the lower approach walls. A view of one of the four reverse tainter
valves is shown in Figure 3. Close-up views of one of the four sector gates are
shown in Figure 4. The structural members of the gate were reproduced in detail
since force measurements were requested.

Details of the side port filling and emptying system are provided in Plate 2.
The design was based on guidance provided in EM 1110-2-1604 (HQUSACE
1995) for a 1,270-ft-long pintle to pintle by 110-ft-wide lock chamber. The
rectangular wall culverts were 18.25 ft high by 15 ft wide. The two intakes for the
side port system were flush mounted in each sector gate monolith normal to the
approach flow. Each intake contained two openings and together provided an area
at the face of the intake of 949 fi*. This gives an intake area to culvert area ratio
of 3.47. The two openings transitioned horizontally to the culvert area 48.4 ft
downstream from the face of the intake. Each culvert contained 28 ports with
triangular baffles on the first 10 upstream ports and rectangular baffles on the last
18 downstream ports. The outlet design was identical in geometry to the intake
and was mirrored about the transverse chamber centerline. The sector gate design
was patterned after the Algiers lock sector gate developed in the 1951 model
investigation (U.S. Army Corps of Engineers 1951).

Chapter2  Physical Model . 5
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a. Looking from riverside to lakeside

Figure 2. Dry-bed view of Type 1 (original) design (Continued)
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Figure 2. {Concluded)
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Figure 3.  Side view of reverse tainter valve
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a. View of gate turned on side

Figure4.  1:25-scale sector gate (Sheet 1 of 3)

Chapter2  Physical Model ~ 9




b. View looking toward skin plate

Figure 4. (Sheet 2 of 3)
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¢. View of skin plate

Figure 4.

(Sheet 3 of 3)

Appurtenances and Instrumentation

Water was supplied to the model through a circulating system. The upper and
lower pools were maintained at near constant elevations during the filling and
emptying operations using constant-head skimming weirs in the model headbay
and tailbay. During a typical filling operation, excess flow was allowed to drain
over the weirs at the beginning of the fill operation and minimal flow over the
weir was maintained at the peak discharge, thereby minimizing the drawdown in
the upper reservoir. This operation was reversed during lock emptying. Upper
and lower pool elevations were set to the desired level by adjusting the skimming
weirs and reading piezometers placed in calm areas of the upper and lower pools.
Water-surface elevations inside the chamber were determined from electronic
pressure cells located in the middle and on each end of the lock chamber.
Pressure cells were also used to measure instantaneous pressures in the culvert
just downstream of the filling and emptying valves. Histories of the end-to-end

Chapter2  Physical Model
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water-surface differential were also recorded during filling and emptying
operations. Dye and confetti were used to study subsurface and surface current
directions. Pressures throughout the systems were measured with piezometers
(open-air manometers). Pressures obtained in this manner are considered average
pressures because of the reduction in frequency response resulting from the use of
nylon tubing.

An automated data acquisition and control program, Lock Control', was used
to control valve operations and collect pressure and strain gauge data. Thirteen
data channels were used, four for control of the filling and emptying valves, six
for pressure data, and three for collecting strain gauge information. The data were
usually collected at a sampling rate of 50 hz. Some of the hawser force and lock
filling and emptying data were collected at 10 hz. These data were then processed
using a computer program.” The processed data were used to determine lock
filling and emptying times, longitudinal and transverse hawser forces, and
pressures downstream from the filling and emptying valves.

A hawser-pull (force links) device used for measuring the longitudinal and
transverse forces acting on a tow in the lock chamber during filling and emptying
operations is shown in Figure 5. Three such devices were used: one measured
longitudinal forces and the other two measured transverse forces on the
downstream and upstream ends of the tow, respectively. These links were
machined from aluminum and had SR-4 strain gauges cemented to the inner and
outer edges. When the device was mounted on the tow, one end of the link was
pin-connected to the tow while the other end was engaged to a fixed vertical rod.
While connected to the tow, the link was free to move up and down with changes
in the water surface in the lock. Any horizontal motion of the tow caused the
links to deform and vary the signal, which was recorded with a personal computer
(PC) using an analog-to-digital converter. The links were calibrated by inducing
deflection with known weights. Instantaneous pressure and strain gauge data were
recorded digitally with a PC.

1 Written by Dr. Barry W. McCleave, Information System Development Division,
Information Technology Laboratory, ERDC.

2 Written by Dr. Richard L. Stockstill, Locks Group, Navigation Branch, Coastal and
Hydraulics Laboratory, ERDC.
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Figure 5. Hawser-pull (force links) measuring device

Similitude Considerations

Kinematic similitude

Kinematic similarity is an appropriate method of modeling free-surface flows
in which the viscous stresses are negligible. Kinematic similitude requires that the
ratio of inertial forces p¥L’ to gravitational forces pgL’ in the model is equal to
that of the prototype. Here, p is the fluid density, V is the fluid velocity, Lis a
characteristic length, and g is the acceleration due to gravity. This ratio is
generally expressed as the Froude number N

vV

Ne= | M

where L, the characteristic length, is usually taken as the flow depth in open-
channel flow.

The Froude number can be viewed in terms of the flow characteristics.
Because a surface disturbance travels at celerity of a gravity wave (gh)"?, where &
is the flow depth, it is seen that the Froude number describes the ratio of
advection speed to the gravity wave celerity. Evaluation of the lock chamber
performance concerns primarily modeling of hawser forces on moored barges
during filling and emptying operations. These hawser forces are generated
primarily by slopes in the lock chamber water surface. The tow bow-to-stern
water-surface differentials are the result of long period seiches or oscillations in
the lock chamber. Seiching is gravity waves traveling in the longitudinal direction

Chapter2  Physical Model 13
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from the upper miter gates to the lower miter gates. Equating Froude numbers in
the model and prototype is an appropriate means of modeling the lock chamber.

Dynamic similitude

Modeling of forces is a significant purpose of the laboratory investigation.
Appropriate scaling of viscous forces requires the model to be dynamically similar
to the prototype. Dynamic similarity is accomplished when the ratios of the
inertia forces to viscous forces WVL of the model and prototype are equal. Here,
W is the fluid viscosity. This ratio of inertia to viscous forces is usually expressed
as the Reynolds number:

VL
Np=— @
Vv

where v is the kinematic viscosity of the fluid ( v = p/p) and the pipe diameter is
usually chosen as the characteristic length L in pressure flow analysis.

Similitude for lock models

Complete similitude in a laboratory model is attained when geometric,
kinematic, and dynamic similitudes are satisfied. Physical models of hydraulic
structures with both internal flow (pressure flow) and external flow (free surface)
typically are scaled using kinematic (Froudian) similitude at a large enough scale
so that the viscous effects in the scaled model can be neglected. More than 50
model and 10 prototype studies of lock filling and emptying systems have been
investigated (Pickett and Neilson 1988). The majority of these physical model
studies used a scale of 1 to 25 (model to prototype). Lock model velocities scaled
using kinematic similitude (model Froude number equal to prototype Froude
number) in a 1:25-scale model have maximum Reynolds numbers at peak
discharges on the order of 10°, yet the corresponding prototype values are on the
order of 10’. The model Reynolds number is large enough to avoid significant
viscous effects.

Boundary friction losses in lock culverts are empirically described using the
smooth-pipe curve of the Darcy-Weisbach friction factor where the head loss is
expressed as

LV’
H=f=— 3
ffng )

where
H;= head loss due to boundary friction
f = Darcy-Weisbach friction factor
L = culvert length
D = culvert diameter

Chapter2  Physical Model




The Darcy-Weisbach friction factor for turbulent flow in smooth pipes is
given in an implicit form (Vennard and Street 1982):

%:2.(} log (N,y/f)-0.8 @

Because f decreases with increasing Ny, the model is hydraulically “too
rough.” The scaled friction losses in the model will be larger than those
experienced by the prototype structure. Consequently, the scaled velocities (and
discharges) in the model will be less and the scaled pressures within the culverts
will be higher than those of the prototype. Low pressures were not a major
concern with the IHNC design; however, the lower discharges would in turn result

in longer filling and emptying times in the model than the prototype will
experience.

Modeling of lock filling and emptying systems is not entirely quantitative.
The system is composed of pressure flow conduits and open-channel components.
Further complicating matters, the flow is unsteady. Discharges (therefore Ny and
Np) vary from no flow at the beginning of an operation to peak flows within a few
minutes and then return to no flow at the end of the cycle. Fortunately though,
engineers now have about 50 years of experience in conducting large-scale
models and subsequently studying the corresponding prototype performance. This
study used a 1:25-scale Froudian model in which the viscous differences were
small and could be estimated based on previously reported model-to-prototype
comparisons. Setting the model and prototype Froude numbers equal results in
the following relations between the dimensions and hydraulic quantities:

Characteristic Dimension’ ;ﬁ:&?::;::pe
Length L=L 1:25

Pressure P=L 1:25

Area A=L2 1:625

Velocity V=117 1:5

Discharge Q=1 1:3,125

Time T=L% 15

Force F=L:2 1:15,625
'Dimensions are in terms of length.

These relations were used to transfer model data to prototype equivalents and
vice versa.

Experimental Procedures

Evaluation of the various elements of the lock system was based on data
obtained during typical filling and emptying operations. Performance was based
primarily on hawser forces on tows in lockage, roughness of the water surface,
pressures, and time required for filling and emptying. Quantification of energy
loss coefficients was made using fixed-head (steady-flow) conditions with the
culvert valve and/or miter gates fully opened or closed. All values of length,
pressure, area, velocity, discharge, time, and force mentioned in the following
experiments have been converted to prototype equivalents unless otherwise stated.
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3 Model Experiments and
Results, Type 1 Design

Pintle Torque Measurements

Initial model experiments were performed to measure the torque on the sector
gate pintle for different gate openings. A torque meter was installed in-line in the
pintle shaft and the output signal was conditioned, recorded on a PC, and
converted to prototype values of torque. The left (looking toward the lake)
riverside sector gate was instrumented for these tests. The experiments were
performed by setting the gate at the desired gate opening, then setting the river
and lake stages, and then recording pintle torque under these steady-state
conditions. The pintle torque values determined from these experiments are listed
in Table 1. The lakeside stage was maintained at el 1.0 for direct head
measurements and the riverside stage was maintained at el 0.0 for reverse head
measurements. Plate 3 shows the position of the sector gates for typical gate
settings. The gate opening is the distance from gate tip to gate tip normal to the
lock center line.

The model did not have the flow capacity to maintain the higher heads using
both sector gates for larger gate openings. This was compensated for during the
experiments with the larger gate settings by opening only one sector gate and
assuming the flow through the opening was symmetrical about the center line of
the approach. The symmetrical flow was achieved by blocking the flow at the
same upstream station as the instrumented sector as shown in Plate 3. The
maximum gate opening obtained using both gates for the 19.6-ft direct head was
12 ft. The maximum gate opening simulated with the 19.6-ft direct head was
24 ft (Plate 3). The maximum gate opening obtained using both gates for the 9-ft
direct head was 24 ft, and a 60-ft gate opening was achieved for the 2-ft direct
head using both sector gates. The maximum gate opening obtained using both
gates for the 9-ft reverse head (herein designated on the plates as 9R) was 44 ft.

The maximum pintle torque measured during these experiments was 7,360 fi-
kips and occurred with a 24-ft gate opening for the 19.6-ft direct head. For the
pintle torque measurements the sector gate was made as frictionless as possible
and no seals were attached to the gates. A plot of pintle torque versus gate
opening for the head conditions tested is shown in Plate 4. With a 2-ft direct
head, the torque varied from 257 ft-kips with a 2-ft gate opening to 1,139 fi-kips
with a 60-ft gate opening. With a 19.6-ft direct head, the pintle torque varied
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from 1,563 f-kips at a 2-ft gate opening to 7,360 ft-kips at a 24-ft gate opening.
A close-up plot of the torque measurements obtained for gate openings up to 8 ft
is shown in Plate 5. This plot indicates a rapid change in torque between 2- and
4-ft gate openings with the 9-ft direct head. This change was probably caused by
the distribution and direction of flow between the sector gates and the recesses.
For all direct head measurements obtained, the hydraulic forces tended to close
the gates. For the 9-ft reverse head measurements, the hydraulic forces tended to
close the gate with openings less than 4 ft and open the gates with settings higher
than 4 ft. The New Orleans District indicated these measurements were

acceptable, and no attempts were made to reduce the forces by modifying the gate
shape.

Lock Chamber Velocities

The New Orleans District requested velocity measurements inside the lock
chamber with both sector gates in the recessed position. This condition
represented an unusual operation or a gate malfunction. Measurements were
obtained for a lakeside el of +1.0 and riverside stage el of +2.2, +2.0, and +1.5 at
the locations shown in Plate 6. Velocities as high as 7.3 ft/sec were measured in
the middle of the chamber with a river stage of el +2.2 and a lakeside stage of
el +1.0. The velocity measurements are provided in Plate 6.

Chamber Performance with End Filling and
Emptying System

End filling with barges drafted to 11 ft

The first filling and emptying experiments were performed with the sector
gate system and a 6-long by 3-wide barge arrangement drafted to 11 fi. Each
barge was 195 ft long by 35 ft wide. The sector gate system is also referred to as
the end filling and emptying system. The barges were positioned in the chamber
as shown in Plate 7. The sector gate speeds were chosen based on those used in
the Algiers Lock model study (U.S. Army Corps of Engineers 1951) and in
discussions with the New Orleans District. The different gate speeds used are
shown in Plate 8. The fastest speed, schedule E, opened the gates to 8.5 ft in
4 min, and the slowest speed, schedule C, opened the gates to 8.5 ft in 36 min.
Data were obtained with four different normal 1ifi conditions, 3,7, 11,and 19.6 fi
and a reverse lift of 9 ft. The New Orleans District requested that the initial tests
be performed with an 11-ft draft on the barges. Generally three tests for each
condition were performed to ensure repeatability. The lakeside stage was

maintained at el —2.0 for the normal lift experiments and at el 9.0 for the reverse
lift experiments.

End filling with 3-ft lift. Time-histories of data obtained during a typical
experiment with a 3-ft lift are shown in Plate 9. The time-history at the top
shows the longitudinal hawser forces measured during an end filling operation
with gate opening schedule D. Gate schedule D opens the gate to 8.5 ft in 6 min.
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The maximum longitudinal hawser force measured in the upstream direction
during this experiment was 4.9 tons at about 6.5 min. An upstream hawser force
indicates that the barge arrangement wants to move toward the upper sector gates.
A downstream hawser force indicates that the barges want to move toward the
downstream sector gates. The downstream hawser forces are designated as the
negative forces in Plate 9 for clarity. In subsequent discussions of downstream
hawser forces, the negative sign will not be shown. The maximum downstream
longitudinal hawser force measured was 5.1 tons and occurred at 3 min into the
filling operation. The two time-histories below the top one are the upstream and
downstream transverse hawser forces, respectively. Right and left refer to the
direction, looking downstream, the barges would move if not moored. Transverse
hawser forces in the left direction are designated as negative forces. These forces
ranged from 1.3 to 1.9 tons and occurred between 4 and 5 min into filling. The
next to the last trace at the bottom of the plot is the filling curve. This curve was
determined by averaging the water-surface elevations measured using pressure
cells located in the middle and both ends of the lock chamber. The curve
indicated that the lock reached the riverside el in 6.5 min. The trace at the bottom
of the plot is the rate of rise of the water surface in the chamber. The values for
rate of rise are on the right side of the plot.

To determine the filling time required to maintain hawser forces of 5 tons or
less, experiments were performed with different gate schedules. The average of
the maximum forces measured for three experiments (typically) with the same lift
and gate schedule was determined and plotted versus the average filling time. The
average maximum hawser forces determined for the experiments performed with
the 3-ft lift and gate operations A, D, and E are shown in Plate 10. The average
maximum values for the hawser forces and the average filling times for the 3-ft
lift and gate schedules A, D, and E are listed in Table 2. The data indicated that
the filling time required to maintain hawser forces of 5 tons or less was 6.8 min.
This filling time would result from a gate operation slightly slower than gate
schedule D.

End filling with 7-ft lift. Time-histories of data obtained during a typical
experiment with a 7-ft lift and gate schedule B are shown in Plate 11. The
maximum longitudinal hawser force measured in the upstream direction during
this experiment was 4.8 tons, and the maximum downstream longitudinal hawser
force measured was 4.6 tons. The transverse forces ranged from 3.6 to 5.5 tons
and occurred between 12 and 14 min into the filling operation, which was near the
time of the maximum rate of rise. The average maximum hawser forces
determined for the experiments performed with the 7-ft lift and gate operations A,
B, and D are shown in Plate 12 and listed in Table 2. To maintain hawser forces
of 5 tons or less, the filling time required was 19.3 min. A gate schedule just
slower than B would be needed to achieve a filling time of 19.3 min.

End filling with 11-ft lift. Time-histories of data obtained with a 11-ft lift
and gate schedule C are shown in Plate 13. The maximum longitudinal hawser
force measured in the upstream direction during this experiment was 8.2 tons and
the maximum downstream longitudinal hawser force measured was 5.4 tons. The
transverse forces ranged from 4.1 to 4.6 tons and occurred between 14 and 17 min
into filling. The average maximum hawser forces determined for the experiments
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performed with the 11-ft lift and gate operations A, B, and C are shown in

Plate 14 and listed in Table 2. To maintain hawser forces of 5 tons or less, the
filling time was extrapolated from the data and determined to be 30 min. This
filling time would require a gate schedule slower than the slowest one evaluated

(©).

End filling with 19.6-ft lift. The data obtained with a 19.6-f lift and gate
schedule C are shown in Plate 15. The maximum longitudinal hawser force
measured in the upstream direction during this experiment was 11.5 tons, and the
maximum downstream longitudinal hawser force measured was 9.0 tons. The
transverse forces ranged from 4.6 to 6.8 tons and occurred between 14 and 17 min
into filling. The average maximum hawser forces determined for the experiments
performed with the 19.6-ft lift and gate operations A, B, and C are shown in
Plate 16 and listed in Table 2. Even with the slowest gate schedule, C, the hawser
forces were greater than 5 tons. A filling time greater than 35 min would be
required to obtain longitudinal forces less than 5 tons.

End filling with 9-ft reverse lift. Experiments were performed for a reverse
head condition with the lakeside stage at el 9.0 and the riverside stage at el 0.0.
Time-histories of data obtained during a typical experiment performed with a 9-ft
lift (reverse head) and gate schedule C are shown in Plate 17. The maximum
longitudinal hawser force measured in the upstream direction during this
experiment was 4.0 tons, and the maximum downstream longitudinal hawser force
measured was 5.9 tons. The transverse forces ranged from 1.8 to 2.7 tons and
occurred between 15 and 18 min into filling. The average maximum hawser
forces determined for the experiments performed with the 9-ft lift (reverse head)
and gate operations A, B, and C are shown in Plate 18. To maintain hawser
forces of 5 tons or less, the filling time was 28.3 min. This compares to a filling
time of 25 min with normal head conditions and 9-ft lift.

Evaluation of the end filling system with 18 barges drafted to 11 ft for lifts
between 3 and 19.6 ft revealed the system was extremely slow. A plot of lift
versus filling time to keep hawser forces less than 5 tons is shown in Plate 19. To
maintain hawser forces less than 5 tons and filling times less than 8 min, lifts less
than 3.5 ft must exist. Once the lift exceeded 11 fi, the hawser forces even with
the slowest practical gate schedule were higher than 5 tons.

End filling with barges drafted to 9 ft

The New Orleans District requested experiments to evaluate the end filling
system for lifts of 3 and 19.6 ft with the 18 barges drafted to 9 ft. The results of
the hawser force experiments with the 3-ft lift are shown in Plate 20 along with
the results for the barges drafted to 11 ft. A filling time of 5.9 min or slower was
required to maintain hawser forces of 5 tons or less with the 18 barges drafted to
9 ft and 3-ft lifts. This compares to 6.8 min with the 11-ft draft. The results of
the hawser force experiments with the 19.6-ft lift are shown in Plate 21 along with
the results for the barges drafted to 11 ft. A filling time of about 32 min was
required to maintain hawser forces of less than 5 tons.
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End filling with 15 barges drafted to 11 ft

The New Orleans District requested experiments with a 3 by 5 barge
arrangement placed at selected locations within the lock chamber. The lock
chamber with the original design end fill system was designed longer than a
conventional 1,270-ft-long (pintle to pintle) lock to allow additional room for
energy dissipation with the end fill system. As shown in Plate 7 with the 6 by 3
barge arrangement, the downstream end of the barges was placed at sta 12+58.75,
which was 50 ft upstream from the lower sector gate skin plate (the upstream end
was at sta 0+88.75). The first experiments with 15 barges and a 7-ft lift were
conducted with the downstream end of the barges placed at sta 11+88.75 (120 ft
upstream from the sector gate skin plate as shown in Plate 22), which puts the
upstream end of the barges at sta 2+13.7. Hawser forces measured with these
conditions are shown in Plate 23 on the plot labeled “3 by 5 at 120 ft.” The filling
time to maintain hawser forces of 5 tons or less was 11.9 min. The upstream end
of the barges was then placed at the same location as the upstream end of a 3 by 6
barge arrangement. The results of the hawser force experiments with the barges
in this location and the 7-ft lift are also shown in Plate 23 (3 x 5 at 245 ft). The
filling time to maintain 5-ton hawser forces or less was just over 19 min. This is
the same as the filling time for the 3 by 6 barge arrangement, also shown in
Plate 23. The higher hawser forces occurred in the upstream direction. The
maximum upstream hawser forces with the 3 by 5 barge arrangement were
sensitive to barge location whereas the maximum downstream hawser forces were
not sensitive to barge location. The upstream end of the barges on the plots
labeled “3 by 5 at 245 ft” and “3 by 6 at 50 ft” in Plate 23 were at the same
location in the chamber (sta 0+88.75).

End emptying with barges drafted to 11 ft

End emptying with 3-ft lift. Experiments were conducted to evaluate the
performance of the sector gate emptying system. Typical time-histories of the
data obtained with the 3-ft lift and gate schedule D are shown in Plate 24. The
maximum downstream longitudinal hawser force was 5.0 tons at just over 3 min
into emptying, and the maximum upstream longitudinal hawser force was 4.8 tons
at about 7 min into emptying. The transverse hawser forces were small (less than
or equal to 1 ton). A plot of the average maximum hawser forces measured with
gate schedules E, D, and A is shown in Plate 25 and the values are listed in
Table 3. The results indicate to maintain 5-ton hawser forces or less will require
an emptying time of 7.3 min or longer.

End emptying with 7- and 11-ft normal lifts and 9-ft reverse lift. The
average maximum hawser forces measured with normal lifts of 7 and 11 ft and
9-ft reverse lift with gate schedules of A, B, and C are shown in Plate 26 and
Table 3. The results indicate that to maintain 5-ton hawser forces or less with a 7-
ft lift will require an emptying time of about 20 min. The upstream and
downstream longitudinal hawser forces measured with the 7-ft lift were fairly
insensitive to the different gate speeds. The upstream longitudinal hawser forces
were just under 5 tons for all three gate schedules (A, B, and C), and the
downstream longitudinal hawser forces were slightly greater than 5 tons for gate
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schedules A and B and slightly less than 5 tons for gate schedule C. These results
make the determination of a filling time to maintain 5 tons or less difficult since
the forces are similar. The maximum longitudinal hawser forces were primarily a
result of the seiching in the chamber caused by the gate opening rather than the
speed of the sector gate for these three gate schedules and 7-ft lift.

The average maximum hawser forces measured with an 11-ft lift and gate
schedules of A, B, and C are shown in Plate 26 and Table 3. With the slowest
gate speed tested, the longitudinal hawser forces were still slightly higher than
5 tons, indicating an emptying time near 35 min would probably be required to
meet the hawser criteria. The average maximum hawser forces measured with a
9-ft reverse lift and gate schedules of A, B, and C are also shown in Plate 26 and
Table 3. The determination of emptying time to maintain 5-ton hawser forces or
less was difficult due to the insensitivity of the hawser forces with these gate
speeds. The emptying time to maintain hawser forces of 5 tons or less with the 9-ft
reverse lift was near 27 min. Results of tests with a 19.6-ft lift conducted with
gate schedule C (Table 3) indicated that emptying times to achieve 5 tons were
excessive and therefore no further tests were performed.

Emptying times to maintain hawser forces of 5 tons or less for the normal lifts
between 3 and 11 ft and the reverse head lift of 9 ft are shown in Plate 27. The
emptying times ranged from 7.3 min with a 3-ft lift to over 35 min with an 11-ft
lift. These times are extremely slow compared with those of existing 1,270-ft side
port locks.

End filling with ship

Experiments were conducted to evaluate the performance of the end filling
system with a ship in the lock chamber. The position of the ship during the
hawser force experiments is shown in Plate 28. The ship was 760 ft long by
106 ft wide drafted to 36 ft. The shape of the hull approximated that of a tanker.
The experiments were performed in the same manner as the barge experiments.
The lakeside stage was at el 0.0, and the riverside stage was set according to the
lift desired. The minimum lake stage of el —2.0 could not be set since the draft of
the ship was 36 ft and the elevation of the top of the port baffles for the side port
system was el —38.0. Hawser force data were obtained for lifts of 3, 7, and 11 ft
with the varying gate speeds.

End filling with ship and 3-ft lift. Time-histories of data obtained for a 3-ft
lift with gate schedule A are shown in Plate 29. The maximum downstream
hawser force measured was 15.2 tons at about 7 min into filling, and the
maximum upstream hawser force was 7.3 tons and occurred about the time the
chamber was full (10.7 min). The transverse forces were small, ranging from 0.3
to 0.6 ton. A plot of the average maximum hawser forces for gate schedules C, B,
A, and D is shown in Plate 30, and the values are provided in Table 4. To
maintain hawser forces of 15 tons or less, a filling time of 9.4 min was required.

End filling with ship and 7- and 11-ft normal lifts and 9-ft reverse lift.
The average maximum hawser forces measured with the 7-ft lift and gate

-Chapter3  Model Experiments and Results, Type 1 Design 21




22

schedules C, B, and A are shown in Plate 30 and Table 4. To maintain hawser
forces of 15 tons or less, a filling time of 17.8 min was required. The average
maximum hawser forces for gate schedules C, B, and A with an 11-fi lift are also
shown in Plate 30 and Table 4. To maintain hawser forces of 15 tons or less with
the 11-ft lift, a filling time of 22.5 min was required. The average maximum
hawser forces measured with 9-ft reverse head are also included for gate schedules
C, B, and A in Plate 30 and Table 4. The upstream longitudinal hawser forces
were still greater than 20 tons for the slow gate operation (schedule C). Therefore,
to maintain hawser forces of 15 tons or less, a filling time much greater than

25 min would be required. This was not acceptable.

End emptying with ship

Experiments were performed next with the end emptying system with the ship
in the chamber. The lakeside stage was at el 0.0, and the riverside stage was set
according to the lift desired for normal head conditions. The average maximum
hawser forces determined for 3-, 7-, and 11-ft normal lifts and 9-ft reverse lift are
shown in Plate 31 for the various gate schedules. The values are provided in
Table 5. To maintain hawser forces of 15 tons or less with a 3-ft lift, an emptying
time of 10.1 min was required.

The average maximum upstream longitudinal hawser forces measured with a
7-ft lift for all three gate speeds ranged from 17.0 to 17.2 tons and occurred
between 0.5 and 1 min into the emptying operation. The movement of the gravity
wave formed when the gates were opened caused these forces. With a 7-ft lift and
this size chamber and ship, the minimum upstream longitudinal hawser forces to
be expected were between 16 and 17 tons with any gate speed. The average
maximum hawser forces measured with the 7-ft lift are shown in Plate 31 and
listed in Table 5. Upstream longitudinal hawser forces of 15 tons or less were not
achieved with the slowest gate speed (schedule C) evaluated.

For all three gate speeds tested with the 11-ft lift, the maximum upstream
longitudinal hawser forces measured were 23.6 to 24.0 tons and occurred between
0.5 and 1 min into the emptying operation. As shown in Plate 31 and listed in
Table 5, an average maximum upstream longitudinal hawser force of 15 tons or
less was not achieved with the slowest gate speed (schedule C) evaluated.

The same tendencies observed with the normal lift were observed with the 9-ft
reverse lift. The maximum downstream longitudinal hawser force occurred
toward the end of the emptying operation, and the maximum upstream
longitudinal hawser force occurred at the beginning of the emptying operation.
The magnitudes of the average maximum downstream longitudinal hawser forces
were higher than those observed with the 11-ft normal lift. The average maximum
upstream longitudinal hawser forces were lower than those measured with the
11-ft lift. To maintain hawser forces of 15 tons or less with the 9-ft reverse lift, an
emptying time of 33.7 min was extrapolated from the average maximum
downstream longitudinal hawser forces plotted in Plate 31.
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The only lift with normal head where the 15-ton limit was achieved for the
gate speeds evaluated was the 3-ft lift. With 7- and 11- ft lifts, the hawser forces
were greater than 15 tons even with the slowest gate speed. With a 9-ft lift and
reverse head, an emptying time of 33.7 mm was required to keep hawser forces
less than 15 tons.

Chamber Performance with Side Port Filling and
Emptying System

Side port filling with barges drafted to 11 ft

Experiments were conducted to evaluate the chamber performance of the side
port filling and emptying system with a 6- by 3-barge arrangement drafted to 11 ft.
The side port filling and emptying system consisted of two 18.25-ft-high by 15.0-
fi-wide culverts, reverse tainter filling and emptying valves, and 28 ports 3.75 ft
high by 2.54 ft wide spaced 28 ft apart. The center of the upstream ports began
274.7 ft downstream from the riverside pintle. The ports contained triangular-
shaped baffles on the first 10 upstream ports, and the remaining ports contained

square baffles to help direct and dissipate the energy of the flow jets as shown in
Plate 32.

The system was evaluated by measuring hawser forces during filling and
emptying with varying valve speeds. Typical valve speeds ranged from 1 to 12
min. The valve opening curve for the reverse tainter valves is shown in Plate 33
along with the values used for the curve. The barges were located in the chamber
in the same manner as with the end filling system (Plate 7).

The average maximum longitudinal hawser forces measured with 1-, 2-, 4-,
and 6-min valve operations are shown in Plate 34 and in Table 6. A 3.9-min
filling time was required to maintain hawser forces of 5 tons or less with the 3-ft
lift. All average maximum transverse hawser forces for this lift were less than
1.1 tons (Table 6). The average maximum longitudinal hawser forces measured
for selected valve operations with 7-, 11-, and 19.6-ft normal lifts and a 9-ft
reverse lift are also shown in Plate 34 and Table 6. The filling time required to
maintain hawser forces of 5 tons or less with a 7-ft lift was 8.4 min. With an 11-ft
lift and a 12-min valve operation, the downstream hawser forces were still slightly
greater than 5 tons. The data indicated that with the 11-ft lift and 6- by 3-barge
group, the maximum downstream longitudinal hawser force was between 5 and
6 tons for all the valve speeds tested. With a 12-min valve speed, the lock filled
in just over 13 min. Also with the 19.6-ft lift, the average maximum downstream
longitudinal hawser forces were similar for all the valve operations. This force
was a result of the gravity wave in the chamber, and with this head a maximum
hawser force of 5 tons could not be attained with normal valve operations. Even
with a 16-min valve speed and a 19.6-t lift, the lock filled in 17 min. The filling
time required to maintain hawser forces of 5 tons or less with the 9-ft reverse lift

was 8.8 min. The average maximum hawser forces measured are shown in
Plate 34 and Table 6.
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Experiments performed with the side port filling system with 18 barges
drafted to 11 ft indicated that for lifts over 7 ft, normal valve operations did not
produce hawser forces of 5 tons or less. Even with very slow valve operations,
the hawser forces were greater than 5 tons.

Side port emptying with barges drafted to 11 ft

Experiments were performed to evaluate the chamber performance during
emptying operations with the side port system. The placement of the barges in the
chamber was the same as during filling (Plate 7), and the valve curve used to
operate the emptying valves is shown in Plate 33.

The average maximum longitudinal hawser forces measured with the 3-, 7-,
11-, and 19.6-ft lifts and the 9-ft reverse lift are shown in Plate 35 and Table 7.
The transverse forces are also included in Table 7. The emptying time required to
maintain hawser forces of 5 tons or less with a 3-ft lift was 4.7 min and 8.2 min
with a 7-ft lift. With the 11-ft lift, even with a 12-min valve operation, the hawser
forces were greater than 5 tons. With the 19.6-ft lift, the hawser forces were still
greater than 5 tons with a 16-min valve operation. The emptying time for a
16-min valve and a lift of 19.6 ft was 17.5 min. The filling time required to
maintain hawser forces of 5 tons or less with a 9-ft reverse lift was 8.3 min.

Experiments performed with the side port emptying system with 18 barges
drafted to 11 ft indicated that for lifts over 7 ft, normal valve operations did not
produce hawser forces of 5 tons or less. Even with very slow valve operations,
the hawser forces were greater than 5 tons.

Side port filling with ship

Experiments were conducted to evaluate the performance of the side port
filling system with the ship in the chamber. The ship was placed in the chamber
as shown in Plate 28.

The average maximum longitudinal hawser forces obtained for various valve
speeds during filling operations with normal lifts of 3,7, 11, and 15 ft and a
reverse lift of 9 ft are shown in Plate 36 and Table 8. The average maximum
transverse hawser forces are also included in Table 8. A filling time of 6.2 min
was required to maintain hawser forces of 15 tons or less with the 3-ft lift and
11.5 min was required with the 7-ft lift. For the 11-ft lift, the average maximum
downstream longitudinal hawser forces were higher than 15 tons with the 14-min
normal valve. Normal valve refers to both culvert valves operating identically. A
15-ft lift instead of the 19.6-ft lift was tested next with the ship due to the large
downstream hawser forces measured with the 11-ft lift. With a 16-min normal
valve and 15-t lift, the hawser forces were still higher than 20 tons and the
filling time was greater than 16 min. The maximum longitudinal hawser forces
measured with the 9-ft reverse lift were also greater than 15 tons. With a 9-ft
reverse lift and a 14-min normal valve, the maximum downstream longitudinal
hawser forces were higher than 18 tons and the filling time was 12.1 min.
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Experiments performed with the side port filling system with the 760-ft ship
drafted to 36 ft indicated that for lifts over 7 ft, normal valve operations did not
produce hawser forces of 15 tons or less. Even with very slow valve operations,
the hawser forces were greater than 15 tons.

Side port emptying with ship

Experiments were conducted to evaluate the performance of the side port
emptying system with the ship in the chamber. Time-histories of the hawser
forces, water-surface elevation, and rate of rise for a typical experiment with a 3-ft
lift and 6-min valve operation are shown in Plate 37. The maximum downstream
longitudinal hawser force measured for this experiment was 15.4 tons and
occurred around 2 min into emptying. The maximum upstream longitudinal
hawser force was 11.3 tons and occurred between 7 and 8 min after the emptying
valves were opened. The lock chamber emptied in 6.2 min with this valve speed
and lift, indicating that the maximum upstream longitudinal hawser force occurred
during underemptying. The term underemptying is used to indicate the period of
time when the lock water-surface elevation drops below the lower pool elevation
due to the inertia of the flow during the emptying operation. It is similar to
overfilling during a filling operation. The transverse hawser forces ranged from
0.8 to 1.2 tons. The average maximum longitudinal hawser forces obtained for
the 3-ft lift are shown in Plate 38 and Table 9. Table 9 also includes the average
maximum transverse hawser forces. An emptying time of 6.5 min was required to
maintain hawser forces of 15 tons or less.

The average maximum longitudinal hawser forces obtained with the 7-ft lift
are shown in Plate 38 and Table 9. The average maximum upstream longitudinal
hawser force occurred after the emptying valves were opened (during under-
emptying). An emptying time of 10.4 min was required to maintain hawser forces
of 15 tons or less with the 7-ft lift. With the 11-ft lift and a 14-min normal valve,
the maximum downstream longitudinal hawser forces were still higher than
15 tons (Plate 38 and Table 9). This was also the case with a 15-ft normal lift and
9-ft reverse lift. With the 15-ft lift and a 16-min normal valve, the maximum
downstream longitudinal hawser forces were still higher than 20 tons. With the
9-ft reverse lift and a 14-min normal valve, the hawser forces were still higher
than 15 tons. '

Experiments performed with the side port emptying system with the 760-ft
ship drafted to 36 ft indicated that for lifts over 7 fi, normal valve operations did
not produce hawser forces of 15 tons or less. Even with very slow valve

operations, the hawser forces were greater than 15 tons.

Lock Coefficient for the Side Port Filling and
Emptying System

A computed lock coefficient can be used as a method to evaluate the
efficiency of a filling and emptying system. An equation typically used by the
U.S. Army Corps of Engineers to compute the overall lock coefficient C; is
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o 2ANH+d-d
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where

A = area of lock chamber, ft’
H = initial head, ft
d = overtravel, ft
A= area of culverts, ft?
T = filling time, sec
k= a constant
t, = valve opening time, sec
g = acceleration due to gravity, fi/sec?

Davis (1989) gives more information on the development of this equation.
The term T - kt, is the lock filling or emptying time for the hypothetical case of
instantaneous valve operation and is determined directly from the curves
presented in Plate 39. These curves represent the filling and emptying times
determined for varying valve operations and lifts (lakeside stage at el —2.0) with
the side port system. The lock coefficients computed from Equation 5 for the
side port system are C, = 0.65 for filling and C;, = 0.63 for emptying. These were
computed using the 11-ft lift. The lock coefficient for filling is slightly less than
those determined from previous studies of 1,200-ft chambers.

Effects of Increased Submergence with End
Filling and Emptying and Side Port Filling and
Emptying Systems

A few experiments were performed to determine the effects of increased
submergence in the chamber. The submergence, defined as the depth between the
lower pool and the floor of the lock chamber, for the previous experiments was
38 fi for the barge experiments and 40 ft for the ship experiments with normal
head conditions. The submergence was increased by 5 ft, and chamber
performance was evaluated for the end filling and emptying system with a 7-ft lift
and 3- and 11-ft lifts with the side port filling and emptying system.

Table 10 compares the filling times to achieve 15-ton hawser forces for the
ship and 5-ton hawser forces for the barges for the different submergence
conditions with a 7-ft lift. The increased submergence allowed slightly faster
filling times for the barges and ship, but did not have any effect on the emptying
times.

The increased submergence conditions were also evaluated for the side port
system and the ship in the chamber. The filling times for 15-ton hawser forces
with the 40- and 45-ft submergence are shown in Table 11. For this range of lifts,
the increased submergence resulted in reduced filling times from 2 to 3 min
without exceeding the 15-ton hawser force limit. The emptying times for the 40-
and 45-ft submergence conditions are also provided in Table 11. A reduction in
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emptying time was also observed with the increased submergence although not as
much as observed for filling operations.

Variable Valve Speed with Side Port System and
Barges

Experiments were performed with the side port system to determine the
chamber performance with variable-speed valves (VSV) at varying valve speeds.
The valve opening curves used with the barges in the chamber are shown in
Plate 40. The curves labeled 8- and 12- min valves were the normal valve
operations and the curves labeled F8BT, F12BT, E8BT, and E12BT were the
curves with varying valve speeds. The valve speeds at the beginning of the
opening operation were reduced from the constant speed and then increased
slightly to achieve full open at the same time as a constant-speed valve operation.

Filling with VSV F8BT, 11-ft lift

The first variable valve speed operation tested was F8BT, and the lift was
11 fi. The valve was opened to 1.33 ft in 110 sec and then to full open in the
remaining 370 sec. Time- histories of the water-surface and longitudinal hawser
force data determined for a normal (constant speed) 8-min valve are shown in
Plate 41 along with the same data obtained with valve operation FSBT. Both the
upstream and downstream longitudinal hawser forces were slightly reduced with
the varying valve speed. The transverse forces (which are not shown) showed no
significant change. The filling time with valve speed F8BT was 10.6 min
compared with 10.8 min with the normal 8-min valve.

Filling with VSV F12BT, 11t lift

Valve operation F12BT (Plate 40) was evaluated next with the 11-ft lift. The
valve was opened to 0.87 ft in 110 sec and then to full open in the remaining
610 sec. Time-histories of the water-surface and longitudinal hawser force data
determined for a normal 12-min valve are shown in Plate 42 along with the same
data obtained with valve operation F12BT. Again, both the upstream and
downstream longitudinal hawser forces were reduced with the varying valve

speed. The filling time with valve speed F12BT was 12.9 min compared with
13.2 min with the normal 12-min valve.

Emptying with VSV E8BT, 11-t lift

Emptying operations were also performed with varying valve operations with
the 11-ft lift. For valve operation E8BT, the valve was opened to 0.72 ft in 60 sec
and then to full open in the remaining 420 sec. Time-histories of the water-
surface and longitudinal hawser force data determined for a normal 8-min valve
and with valve operation E8BT are shown in Plate 43. The maximum upstream
longitudinal hawser force was reduced from 5.3 tons to 2.7 tons, and the
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maximum downstream longitudinal hawser force was reduced from 6.3 tons to
4.0 tons. No significant change in transverse forces was observed. A slight
increase in emptying time was observed. The emptying time with valve speed
E8BT was 10.6 min compared with 10.4 min with the normal 8-min emptying
valve.

Emptying with VSV E12BT, 11-ft lift

Emptying operations with a 12-min variable valve were also performed with
the 11-ft lift. For valve operation E12BT, the valve was opened to 0.47 ft in
60 sec and then to full open in the remaining 660 sec. Time-histories of the
water-surface and longitudinal hawser force data determined for a normal 12-min
valve and with valve operation E12BT are shown in Plate 44. The maximum
upstream longitudinal hawser force was reduced from 5.1 tons to 2.1 tons, and the
maximum downstream longitudinal hawser force was reduced from 6.0 tons to
3.1 tons. A very slight increase in emptying time was observed. The emptying

- time with valve speed E12BT was 12.8 min compared with 12.7 min with the

normal 12-min emptying valve.

Variable-Speed Valve with Side Port System and
Ship

Filling with VSV F8ST, 11-ft lift

Variable valve operations were also performed with the side port system and
the ship in the chamber (Plate 45). These varying valves were slower at the
beginning of the operation than those used with the barges (Plate 40). For valve
operation F8ST with the 11-fi lift, the valve was opened to 2.27 ft in 180 sec and
then to full open in the remaining 300 sec. Time-histories of the water-surface
and longitudinal hawser force data determined for a normal 8-min valve and an
8-min VSV are shown in Plate 46. The maximum downstream longitudinal
hawser force was reduced from 21.7 tons to 16.9 tons; however, the maximum
longitudinal upstream hawser force was increased from 9.0 tons to 11.1 tons. The
filling time with valve speed F8ST was 10.7 min compared to 10.3 min with the
normal 8-min valve.

Filling with VSV F12ST, 11-ft lift

Valve operation F12ST was evaluated next with the ship and 11-ft lift. The
valve was opened to 1.55 ft in 190 sec and then to full open in the remaining
530 sec. Plate 47 shows the time-histories of the water-surface and longitudinal
hawser force data determined for a normal 12-min valve and a 12-min VSV
(F12ST). The maximum downstream longitudinal hawser force was reduced
from 18.0 tons to 14.3 tons; however, the maximum longitudinal upstream hawser
force was increased from 8.4 tons to 10.0 tons. The transverse forces showed no
significant change. The filling time with valve speed F12ST was 13.1 min
compared with 12.5 min with the normal 12-min valve.
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Emptying with VSV E8ST, 11-ft lift

Emptying operations were also performed with varying valve operations with
the ship and 11-ft lift. For VSV E8ST, the valve was opened to 1.22 ft in 100 sec
and then to full open in the remaining 380 sec. Time-histories of the water-
surface and longitudinal hawser force data determined for a normal 8-min valve
and with VSV E8ST are shown in Plate 48. The maximum downstream -
longitudinal hawser force was reduced significantly from 22.3 tons to 13.2 tons,
and the maximum upstream longitudinal hawser force was reduced from 11.5 tons
to 10.6 tons. The transverse hawser forces were slightly increased with the
variable operation. The emptying time with VSV E8ST was 11.6 min compared
with 10.5 min with the normal 8-min emptying valve.

Emptying with VSV E12ST, 11-ft lift

For VSV E128T, the valve was opened to 0.88 f in 110 sec and then to full
open in the remaining 610 sec. Time-histories of the water-surface and
longitudinal hawser force data determined for a normal 12-min valve and with
VSV E12ST are shown in Plate 49. The maximum downstream longitudinal
hawser force was reduced from 18.6 tons to 12.6 tons, and the maximum
upstream longitudinal hawser force was reduced from 10.6 tons to 9.4 tons. The
emptying time with VSV E12ST was 13.7 min compared with 12.7 min with the
normal 12-min emptying valve.

The experiments performed with the VSV for total valve opening times of 8
and 12 min revealed that reductions in the hawser forces could be achieved with
these operations. With side port filling and barges in the chamber, both the
upstream and downstream longitudinal hawser forces were reduced as well as the
filling time. The maximum transverse hawser forces were not changed noticeably.
With side port emptying and barges in the chamber, reductions in the maximum
upstream and downstream longitudinal and transverse hawser forces were
observed. The emptying times were slightly increased. With side port filling and
the ship in the chamber, the maximum downstream longitudinal hawser force was
- reduced significantly and the maximum upstream longitudinal hawser force was
increased slightly. The filling times were slightly increased. With side port
emptying and the ship in the chamber, the maximum downstream longitudinal
hawser force was reduced significantly and the maximum upstream longitudinal
hawser force was also reduced. A slight increase in the maximum transverse
forces was observed. The emptying times were increased with the variable
12-min valve operation.

Chamber Peﬁormance with Combined Side Port
and End Filling and Emptying Systems

A few experiments were performed to determine chamber performance using
both the side port and the end filling and emptying systems. The 11-ft lift
condition with the ship in the chamber was evaluated since fast and acceptable
filling times and hawser forces were not achieved for these conditions with either
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filling and emptying system. The first experiment was conducted with the side
port filling valves opening in 14 min and initiating opening of the end fill sector
gates at 6.33 min after the side port valves began opening. The end fill gates were
opened to 8 ft at 14 min after filling began and stopped at this opening. Time-
histories of the hawser forces and water-surface elevations measured during this
experiment are shown in Plate 50. The longitudinal hawser forces were excessive.
A maximum downstream longitudinal hawser force of 45.6 tons was measured
between 8 and 8.5 min into filling and was caused by the end gates opening. A
maximum upstream longitudinal hawser force of 22.3 tons was measured at

12 min, which was after the lock filled. The lock filling time with this operation
was 11.7 min. The maximum transverse hawser forces ranged from 2.5 to 3.7 tons
and were not affected significantly by the end gates opening.

The second combination of filling with the 11-ft lift consisted of a 14-min
valve with the side port filling valves and gate speed C (Plate 8) with the end
gates. Results shown in Plate 51 indicate that the maximum longitudinal hawser
forces were reduced significantly from those shown in Plate 50; however, the
filling time was slower, 14.1 min compared with 11.7 min. This filling time was
similar to that determined using the side port system only with a 14-min filling
valve. The hawser forces shown in Plate 51 were also similar to those determined
using only the side port system with a 14-min valve. The results indicated that
operating the end gates with gate speed C and the side port with a 14-min valve
was not helpful in reducing filling times.

The next combination of filling with the 11-ft lift consisted of a 14-min valve
with the side port filling valves and gate schedule speed B (Plate 8) with the end
gates. Results shown in Plate 52 indicated that the maximum longitudinal hawser
forces were not any higher than those measured with gate speed C and the filling
time was faster, 13.0 min. The maximum longitudinal hawser forces were not
excessive and were not significantly higher than those measured with the side port
system only with a 14-min filling valve. This filling system combination showed
that improvements to the chamber performance could be achieved using both
systems to fill the lock. Additional experiments would be required to determine
the best combinations needed to achieve 15-ton hawser forces.

Emptying experiments were conducted with the 11-ft lift, side port system
with a 14-min emptying valve and various sector gate operations. The best
performance was observed with gate speed C (Plate 53). The maximum
longitudinal hawser forces were not excessive (but were greater than 15 tons) and
were not significantly higher than those measured with the side port system only
with a 14-min emptying valve. Again this emptying system combination showed
that improvements to the chamber performance could be achieved using both
systems to empty the lock.

Additional Pintle Torque Measurements during
Gate Movement

Experiments were conducted to measure torque on the sector gate pintle
caused by flow through the lock from an accident or mechanical malfunction.

Chapter3  Model Experiments and Results, Type 1 Design




There was concern over the pintle torque caused by flow through the lock
chamber if the lower sector gates were in the open position and the upper gates
were also inoperable.

Normal head, sector gates open initially, riverside el 1.6, lakeside
el 0.5

The initial measurements were performed with all the sector gates in the open
position as shown in Plate 54, a riverside stage el of 1.6, and a lakeside stage of
el 0.5. Time-histories of the pintle torque, gate position, and water-surface
elevations measured with these conditions are shown in Plate 55. This test
(TRQS5) was performed by allowing flow through the lock with all the sector gates
in the open position for 4 min. The resisting torque of the gate operating
machinery as determined by the New Orleans District was 2,760 ft-kips. This
resisting torque was simulated in the model with a slip clutch device. A torque
greater than this amount was required to move the sector gate. As shown in
Plate 55, essentially no torque was caused by the flow during the initial 4 min
with the gates in the open position. The left sector gate, which contained the
torque meter and slip clutch, was then manually moved from fully open to a gate
location 43 ft from the lock center line. This gate position is equivalent to a gate
opening of 98 ft with the tip of the gate 12 ft from the lock wall. This is indicated
on the time-history by the first arrow on the left pointing to the torque time-
history. The sharp spike in torque shows the resisting torque being overcome
during manual movement and then dropping back to 500 ft-kips when manually
released. The gate remained in this position; the flow did not move the gate. At
11 min, the gate was manually moved to a gate position 32 ft from the lock center
line. The torque fluctuated between 400 and 700 fi-kips at this gate position and
again was not moved by the flow. The water-surface elevations began to change
during this gate position. The riverside began to rise and the lakeside began to
drop as shown in Plate 55. The gate was moved to 8.5 ft from the lock center line
at 16 min, and when the gate was released, the torque dropped to around zero.
Again no continuous movement of the gate was observed. Additional experi-

ments were performed with similar stages (Plates 56 and 57), and similar results
were observed. ‘

Normal head, right sector gate closed initially, riverside el 2.45,
lakeside el 0

Experiments were then performed with the right (looking downstream) sector
gate closed and the left gate open initially. This configuration is also shown in
Plate 54. Time-histories from this experiment are shown in Plate 58. The left
sector gate remained in the open position for 2.5 min and did not move. The gate
was manually moved to a location 50 fi from the lock center line and left in that
position until 8 min. The torque fluctuated noticeably in this position with the
maximum torque observed just over 2,000 fi-kips. No continuous closure was
observed. At 8 min, the gate was manually moved to 43 ft from the lock center
line where the torque fluctuated between 500 and 2,500 fi-kips and no continuous
closure was observed. At 13 min, when the gate was manually moved to 33 ft
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from the lock center line, the torque fluctuated between 250 and 2,600 ft-kips.
The flow caused the gate to begin to close, and the riverside elevation began to
rise. Atabout 20 min, the gate movement stopped at an opening of 22 ft from the
lock center line with the torque still fluctuating. The gate was nudged to 15 ft
from the lock center line where the mean torque was reduced and the gate closed
very slightly. Another experiment was performed with similar conditions, and
similar results were obtained as shown in Plate 59.

Reverse head

A few experiments were performed with reverse head and varying conditions.
The gate positions for these experiments are shown in Plate 60. The first
experiment was conducted with a lakeside initial el of 0 and a riverside initial el of
—1.3. Time-histories measured are shown in Plate 61. The gate was manually
restrained and released at time 0. The gate tended to close, and the pintle torque
was around 750 ft-kips. At 2.5 min the gate opening was manually increased to
2 ft. The torque recorded was —200 fi-kips, and no continuous movement was
observed. The negative torque tended to open the gate (move the gate into the
recess). At 7.5 min, the gate opening was manually increased to 5 ft, and the
torque was near —300 ft-kips. At 12.5 min the gate was moved to 10 fi, and the
torque measured was between —1,000 and —1,200 ft-kips. When the gate was
further opened to 25 and 38 ft, the torque dropped below —500 fi-kips. No
continuous gate movement was observed during this experiment.

Another experiment was performed with conditions similar to those described
previously (Plate 62). For this experiment, the gate was manually restrained from
movement between time 0 and 2.5 min and then released. The gate opening
remained at 0 ft, and the torque was between 500 and 750 ft-kips. At 5 min, the
gate was moved to a 2-ft opening, and the torque dropped to —100 ft-kips. For
this experiment, the torque never exceeded —500 ft-kips even with the 30-fi gate
opening.

Experiments were performed next with both sector gates closed initially
(Plate 60) and varying lakeside and riverside elevations. The time-histories from
these experiments are provided in Plates 63-66. The sector gate opposite the
instrumented gate remained in the closed position throughout the experiments.
Some continuous movement was detected during these experiments; however, no
rapid movements were observed.

Summary of Original Design Performance

A major focus of this model investigation was to compare the performance of
the end filling and emptying system to that of the side port filling and emptying
system for the shallow-draft (11-ft) barges and the deep-draft (36-ft) ship.

A comparison of the filling times to achieve 5-ton hawser forces or less for
the end filling and side port systems is shown in Plate 67. The side port system
was considerably faster than the end filling system. With lifts over 7 ft and
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normal head conditions, the 5-ton hawser limit was difficult to achieve with
normal valve operations for the side port system. The data points for the side port
system with 11- and 19.6-ft lifis are not shown since a 5-ton hawser force was not
reached for the valve operations tested. The maximum longitudinal downstream
hawser forces measured with the19.6-ft lift and side port system were between 8§
and 9 tons for valve operations between 4 and 16 min. The filling time with the
end fill system and an 11-ft lift was 28.7 min.

A permissible filling time given in EM 1110-2-1604 (HQUSACE 1995) for a
1,270- by 110-ft side port lock with a 20-ft lift is 7.5 min. This is based on the
5-ton hawser force limit determined from model investigations that used barges
drafted to represent 9 ft. The model results shown in Plate 67 are for barges
drafted to 11 ft. An equivalent hawser force for a 9-fi-draft barge estimated from
the measurements made using an 11-ft-draft barge force could be obtained by
multiplying the force by 9/11. For example, if the maximum downstream
longitudinal hawser forces shown in Plate 34 for the side port system with an 11-ft
lift were multiplied by 9/11, they would all be under 5 tons. The filling times
would then be much faster and more comparable to the guidance provided in
EM 1110-2-1604. The difference in chamber pintle-to-pintle length between the
current study (1,360 ft) and the models used to obtain the guidance in the EM
(1,270 ft) also contributes to the longer filling times determined for the IHNC
Type 1 design lock.

A comparison of the emptying times determined for the end emptying and
side port systems is shown in Plate 68. The side port emptying was much faster
than the end emptying. With a 7-ft lift, the side port emptied in 8.2 min compared
with 20 min for the end emptying. For lifts between 7 and 19.6 ft with the side
port, the maximum downstream longitudinal hawser forces were slightly over
5 tons and are not shown in Plate 68. With the side port and 11-ft lift, maximum
hawser forces of just over 5 tons were observed with a filling time of 10.5 min.
With the 19.6-t lift, hawser forces just over 5 tons were observed with a filling
time of 17 min for the side port system.

Acceptable filling times determined for the deep-draft ship with the end filling
and side port systems are shown in Plate 69. The side port system was faster than
the end filling. With the 7-ft lift, the filling time for the side port was 11.5 min
compared with 17.8 min for the end filling system.

Emptying times determined to obtain a 15-ton hawser force or less are shown
in Plate 70 for the end emptying and side port systems. For lifts higher than 3 ft
with the end emptying system and normal head, hawser forces of 15 tons could
not be achieved with the gate speeds tested. This indicates this system would be
extremely slow for emptying operations. The side port system was faster, but
hawser forces of 15 tons or less could not be achieved for the valve operations
tested for lifts greater than 7 fi.
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Outlet Flow Conditions

The flow conditions observed in the outlet culvert and channel were not
favorable with the original design. The flow in the outlet culvert during emptying
was concentrated along the outside wall resulting in the flow conditions depicted
in Plate 71. More flow discharged from the outside port and caused circulating
flow in the outlet channel. The flow concentration was caused by the culvert bend
and the abrupt expansion at the beginning of the outlet. The New Orleans District
indicated this design should be modified.
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4 Model Experiments and
Results, Type 2 Design

In an effort to improve the performance of the original design lock,
modifications were made to the design. The pintle-to-pintle length of the chamber
was reduced from 1,360 ft to 1,270 ft. Initially the longer length of the lock was
considered necessary with the end filling and emptying system. Since a decision -
was made by the New Orleans District to use the side port filling and emptying
system, the additional length should not be needed. The intakes and outlet
designs were modified in an attempt to reduce the flow separations observed
during filling and emptying operations. The layout for the modified lock chamber
(Type 2 design) is shown in Plate 72. The details for the Type 2 design intake are

shown in Plate 73. The Type 2 design outlet was a mirror image of the Type 2
design intake.

Chamber Performance With Type 2 Design

Experiments were conducted to evaluate the lock chamber performance of the
Type 2 design with barges drafted to 11 ft and positioned in the chamber as shown
in Plate 74. The side port system was used for these experiments. The lakeside
stage was maintained at el —2.0 for all normal lift conditions with barges in the
chamber and el 0.0 with the ship in the chamber.

Filling with barges and 3-, 7-, 11-, and 19.6-ft normal lifts and 9-ft
reverse lift ’

The first chamber performance experiments with the Type 2 design were
conducted with a 3-ft lift. Time-histories of data obtained during a typical
experiment, Test 2, performed with a 3-ft lift and 2-min valve are shown in
Plate 75. Generally, three experiments were performed for each condition to
ensure repeatability. The top trace shows the longitudinal hawser forces measured
during filling with a 2-min valve operation. The maximum longitudinal hawser

- force measured in the upstream direction during this experiment was 4.0 tons at
about 1.5 min. The maximum downstream longitudinal hawser force measured
was 4.8 tons at about 1 min into the filling operation. The maximum upstream and
downstream transverse hawser forces ranged from 0.8 to 1.1 tons and occurred
between 1.5 and 4 min into filling. The curve indicates the lock filled in 3.7 min.
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The results from these experiments with the 3-ft lift are listed in Table 12
along with the other lifts evaluated. The average maximum longitudinal hawser
forces determined for the experiments performed with the 3-ft lift and valve
operations of 1, 2, 4, and 6 min are plotted in Plate 76 versus the filling time. The
plot indicates that to maintain hawser forces of 5 tons or less, the filling time
required was 3.6 min, which was achieved with a 2-min valve operation. The
average maximum transverse hawser forces were less than 1.6 tons for all valve
speeds tested.

The average maximum longitudinal hawser forces determined for the
experiments performed with normal lifts of 7, 11, and 19.6 ft and a reverse lift of
9 ft are listed in Table 12 and plotted in Plate 76. To maintain hawser forces of
5 tons or less with a 7-ft lift, the filling time required was 5.4 min. The filling
times required to maintain hawser forces of 5 tons or less with lifts of 11 and
19.6 ft were 8.0 and 16.0 min, respectively.

Experiments were performed to determine the chamber performance with
reverse head conditions.. The riverside was set at el 0.0 and the lakeside was set at
el 9.0. The average maximum hawser forces determined for the experiments
performed with the 9.0-ft reverse lift condition are listed in Table 12 and are
plotted in Plate 76. A hawser force of 5 tons was not reached with the slowest
valve operation tested (12 min). The average maximum downstream longitudinal
hawser forces were similar for valve operations of 8, 10, and 12 min. These
results indicate that the initial seiching in the chamber was similar for these valve
operations and that a VSV operation was needed to reduce the downstream
longitudinal hawser forces. The filling time required to maintain hawser forces of
5.9 tons or less was 8.2 min.

Emptying with barges and 3-, 7-, 11-, and 19.6-ft normal lifts and 9-ft
reverse lift

The performance of the Type 2 design system was also evaluated for
emptying operations. These experiments were also conducted with 18 barges
drafted to 11 ft. The average maximum hawser forces determined for these
experiments with the 3-ft lift are listed in Table 13 and are plotted in Plate 77.
The emptying time required to maintain hawser forces of 5 tons or less was
4.5 min.

The average maximum hawser forces determined for 7-, 11-, and 19.6-ft
normal lifts and the 9-ft reverse lift are provided in Table 13. The average
maximum longitudinal hawser forces are plotted in Plate 77. The emptying time
required to maintain hawser forces of 5 tons or less with a 7-ft lift was 7.6 min.
The emptying time required to maintain hawser forces of 5 tons or less with the
11-ft lift was extrapolated from the data and was determined to be 11.4 min. With
a 19.6-ft lift, the emptying time to maintain hawser forces of 5 tons or less was
extrapolated from the data and was 16.4 min. For the 9-ft reverse lift condition,
the emptying time required to maintain hawser forces of 5 tons or less was
7.3 min.
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Summary, Type 2 design side port system with barges

A plot of lift versus filling time to maintain hawser forces of 5 tons or less for
lifts up to 19.6 ft and the 9-ft reverse lift is shown in Plate 78. The filling times
determined with the original design (Type 1 design) are included for comparison.
Faster filling times and hawser forces of 5 tons or less were achieved with the
Type 2 design for lifts up to 19.6 fi. With the Type 1 design, hawser forces of
5 tons or less were not reached for lifts greater than 7 fit using very slow valve
operations.

A plot of lift versus emptying time to maintain hawser forces of 5 tons or less
for lifts up to 19.6 ft and the 9-ft reverse lift is shown in Plate 79. A comparison
of the filling times determined with the original design (Type 1 design) is
included. Faster emptying times and 5-ton hawser forces were achieved with the
Type 2 design for lifts up to 19.6 ft. With the Type 1 design, 5-ton hawser forces
were not reached for lifts greater than 7 fi using very slow valve operations.

Filling with ship and 3-, 7-, 11-, 15-, and 19.6-ft normal lifts and 9-ft
reverse lift :

Experiments were conducted to evaluate the performance of the Type 2
design side port filling system with the ship in the chamber. The ship was placed
in the chamber as shown in Plate 80. The average maximum hawser forces
determined with the ship in the chamber and the Type 2 design lock are listed in
Table 14. The average maximum longitudinal hawser forces are plotted in
Plate 81 for normal lifts of 3,7, 11, 15, and 19.6 ft and a reverse lift of 9 ft. The
following filling times were required to maintain hawser forces of 15 tons or less:
4.9 min with a 3-ft lift; 7.2 min with the 7-ft lift; 9.5 min for the 11-ft lift;

11.7 min for the 15-ft lift; and 15.5 min for the 19.6-ft lift. A filling time of
13.4 min (extrapolated from the data shown in Plate 81) was required to maintain
hawser forces of 15 tons or less with the 9-ft reverse lift.

Emptying with ship and 3-, ?-, 11-, 15-, and 19.6-ft normal lifts and 9-ft
reverse lift

Experiments were also conducted to evaluate the performance of the Type 2
design side port emptying system with the ship in the chamber. The average
maximum hawser forces determined for normal lifts of 3, 7, 11, 15, and 19.6 ft
and a reverse lift of 9 ft are listed in Table 15. The average maximum
longitudinal hawser forces are plotted in Plate 82. The acceptable emptying times
to keep maximum hawser forces at 15 tons or less for normal lifts of 3, 7, 11, 15,
and 19.6 ft were 6.6, 10.6, 13.0, 14.4, and 15.3 min, respectively. An emptying
time of 9.7 min was required to maintain hawser forces of 15 tons or less with the
9-ft reverse liff.
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Summary, Type 2 side port system with ship

A plot of lift versus filling time to maintain hawser forces of 15 tons or less
for lifts up to 19.6 ft and the 9-ft reverse lift is shown in Plate 83. The filling
times determined with the original design (Type 1 design) are provided for
comparison. Faster filling times and 15-ton hawser forces were achieved with the
Type 2 design for lifts up to 19.6 ft and for the reverse head with 9-ft lift. With
the Type 1 design, 15-ton hawser forces were not reached for lifts greater than 7 ft
even with very slow valve operations.

Experiments performed with the side port emptying system with the 760-ft
ship drafted to 36 ft indicated that a 15-ton hawser force was achieved with all
lifts tested. With the Type 1 design this was not accomplished for lifts over 7 ft
and very slow valve operations. A plot of lift versus emptying time to maintain
hawser forces of 15 tons or less with the Type 2 design and ship is shown in
Plate 84.

Variable speed valve with Type 2 Design

Type 1 VSV filling with barges. Experiments were performed to determine
the effects of using a VSV with the Type 2 design for filling the lock. Results of
the filling and emptying experiments with the normal (constant speed) valve
operation revealed that the maximum downstream longitudinal hawser force
occurs during the initial portion of the filling cycle. This is due to the amount and
distribution of flow entering the chamber in combination with the seiching of the
chamber (movement of the gravity wave). Observation of the time-history of the
longitudinal hawser forces with a 19.6-ft lift and 8-min normal valve showed that
the maximum downstream longitudinal hawser force of 6.6 tons occurred 36.4 sec
after filling began. This is very close to the time required for a gravity wave to
travel from the lower end of the chamber to the upper end of the chamber with a
depth of 38 ft and a chamber length of 1,270 ft.

The VSV operation shown in Plate 85 was tested with a 19.6-ft lift and 18
barges drafted to 11 ft. This valve operation, designated the Type 1 VSV,
consisted of a constant speed for the first 2 min to open the valve to 2.5 percent
(radial), changing to a constant speed for the next 2 min to open the valve to
37.4 percent, and then changing to a constant speed for the final 2 min to open the
valve fully. The filling curve and longitudinal hawser forces determined for this
operation are shown in Plate 86 along with the filling curve and longitudinal
hawser forces for an 8-min normal valve operation. The maximum upstream and
downstream longitudinal hawser forces were reduced with this type valve
operation. The maximum downstream longitudinal hawser force was 4.4 tons and
occurred between 2 and 3 min into the filling operation. This force was caused by
the increase in flow into the chamber after the valve speeds were switched. As
mentioned previously with a 19.6-ft lift and normal valve operations, a 16.0-min
filling time was required to maintain hawser forces of 5 tons or less. With the
VSV operation shown in Plate 85 with a 19.6-ft lift, the filling time was 13.6 min
and the maximum downstream longitudinal hawser force was 4.4 tons.
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Types 2-4 VSV filling with ship. Experiments similar to those performed

- with the barges were conducted to determine the effects of using a VSV for filling
the lock with a ship in the chamber. The results from the barge experiments
indicated that the valve could be opened slightly faster than the curve shown in
Plate 85. The VSV shown in Plate 87 was tested with the ship in the chamber for
alift of 11 ft. This valve operation (designated the Type 2 VSV) consisted of
using a constant speed for the first 2 min to open the valve to 12.5 percent
radially, changing to a constant speed for the next 2 min to open the valve to

37.4 percent, and then changing to a constant speed for the final 2 min to open the
valve fully. The maximum downstream longitudinal hawser force measured was
-13.2 tons, and the maximum upstream longitudinal hawser force was 15.0 tons as
shown in Plate 88. The filling time for this operation was 8.6 min. The chamber
performance was considered acceptable for this VSV operation. With a constant-
speed valve operation and an 11-ft lift, the filling time required to maintain
longitudinal hawser forces of 15 tons or less was 9.5 min. The permissible filling
time was faster with the variable speed than the constant-speed valve.

Another experiment was performed with the 11-ft lift and the VSV operation
shown in Plate 89. This valve operation (Type 3 VSV) consisted of using a
constant speed for the first 2 minutes to open the valve to 12.5 percent and
changing to a constant speed for the next 4 min to open the valve to 100 percent.
The maximum downstream longitudinal hawser force measured was 13.1 tons,
and the maximum upstream longitudinal hawser force was 9.8 tons as shown in
Plate 90. The filling time for this operation was 8.0 min. Chamber performance
was improved from the previous experiment since the filling time was reduced
from 8.6 to 8.0 min and the hawser forces were also reduced. The longitudinal
hawser forces measured with Type 3 VSV were less than 15 tons indicating a
faster filling time was possible and could be obtained by opening the valve more
in the initial portion of the operation.

An experiment with the 11-ft lift and ship using the VSV operation shown in
Plate 91 was conducted next. This valve operation (designated the Type 4 VSV)
consisted of using a constant speed for the first 2 min to open the valve to
17.5 percent and changing to a constant speed for the next 4 min to open the valve
to 100 percent. The valve was opened 5 percent more in the first 2 min than in
operations with the Type 3 VSV. The filling valve operations were performed
with the Type 4 VSV, which consisted of using a constant speed for the first third
of the total valve time (7,/7, = 0.333) to open the valve to 17.5 percent and
changing to a constant speed for the remaining two-thirds of operation to open the
valve to 100 percent. The maximum downstream longitudinal hawser force
measured was 14.0 tons, and the maximum upstream longitudinal hawser force
was 10.0 tons as shown in Plate 92. Chamber performance was improved since
the filling time was reduced slightly from the previous experiment.

Additional experiments with Type 2 design and Type 4 VSV
Previous experiments with the Types 1 and 2 design locks showed that

improvements in the chamber performance were possible using a VSV instead of
a constant-speed valve. A limited number of filling and emptying experiments
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were performed with the ship and barges in the Type 2 design lock chamber to
further evaluate chamber performance with VSV operations.

Filling with Type 4 VSV, ship, and 3-, 7-, 11-, and 19.6-ft normal lifts
and 9-ft reverse lift. Because of improvements to performance with the Type 4
VSV, more experiments were conducted. The average maximum of the hawser
forces and the filling times determined for normal lifts of 3-, 7-, 11-, and 19.6-ft
lifts and a 9-ft reverse lift are shown in Table 16. The average maximum
longitudinal hawser forces measured for these lifts are plotted in Plate 93. The
filling time required to keep the maximum longitudinal hawser forces at 15 tons or
less with the 3-ft lift was 4.2 min. This time was achieved with the Type 4 VSV
and a total valve time of 3 min. The filling time required to maintain maximum
hawser forces of 15 tons or less with a constant-speed valve for the 3-ft lift and
ship with the Type 2 design lock was 4.9 min.

Filling times of 6.2 and 8.0 min were required to maintain hawser forces of
15 tons or less with lifts of 7 and 11 ft, respectively. A filling time greater than
the 15.5 min was required for acceptable chamber performance with the 19.6-ft
lift. The 15.5-min filling time was determined with the constant-speed valve. The
Type 4 VSV was not advantageous with the ship and a 19.6-ft lift. For the 9-ft
reverse lift, maximum downstream longitudinal hawser forces of just over 15 tons
were achieved with a 12.2-min filling time. Longer valve times gave similar
results.

Emptying with Type 11 VSV, ship, and 3-, 7-, 11-, and 19.6-ft normal
lifts and 9-ft reverse lift. Experiments were conducted next to evaluate the
performance of the Type 2 design lock and VSV operation during emptying with
the ship in the chamber. The Type 11 VSV shown in Plate 94 was used for these
emptying experiments. Due to the large hawser forces observed in the constant-
speed valve experiments during the underemptying at the end of the emptying
operation, the valve was stopped at 80 percent open. The 80 percent refers to the
radial travel of the gate and is equivalent to a 5/B value of 0.733.

The average maximum hawser forces determined for normal lifts of 3, 7, 11,
and 19.6 ft and a reverse lift of 9 ft are shown in Table 17. The average maxi-
mum longitudinal hawser forces measured with these lifts are plotted in Plate 95.
An emptying time of 5.0 min was required to maintain hawser forces of 15 tons or
less with the 3-ft lift. Emptying times of 7.8, 9.6, and 12.8 min were required to
maintain hawser forces of 15 tons or less with lifts of 7, 11, and 19.6 ft, respec-
tively. An emptying time of 7.1 min was required to maintain hawser forces of
15 tons or less with the 9-ft reverse lift.

Filling with Type 4 VSV, barges, and 3-, 7-, 11-, and 19.6-ft normal lifts
and 9-ft reverse lift. Chamber performance was evaluated next during filling
with the Type 4 VSV and 18 barges drafted to 11 ft inside the chamber. The
average maximum hawser forces determined for the experiments with normal lifts
of 3,7; 11, and 19.6 ft and a reverse lift of 9 ft are provided in Table 18. The
average maximum longitudinal hawser forces are plotted in Plate 96. To maintain
hawser forces of 5 tons or less with lifts of 3, 7, 11, and 19.6 ft, the filling times
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required were 3.3, 4.8, 7.0, and 11.6 min, respectively. The filling time required
to maintain hawser forces of 5.0 tons or less with a 9-ft reverse lift was 7.2 min.

Emptying with Type 11 VSV, barges, and 3-, 7-, 11-, and 19.6-ft normal
lifts and 9-ft reverse lift. The chamber performance of the Type 2 design system
with the Type 11 VSV was also evaluated for emptying operations. These
experiments were also conducted with 18 barges drafted to 11 ft. The average
maximum hawser forces determined for these experiments with the 3-, 7-, 11-,
and 19.6-ft normal lifts and a 9-ft reverse lift are listed in Table 19. The average
maximum longitudinal hawser forces are plotted in Plate 97. The emptying times
required to maintain hawser forces of 5 tons or less with normal lifis of 3, 7, and
11 ft were 4.1, 5.6, and 7.0 min, respectively. The emptying time required to
maintain hawser forces of 5 tons or less with a 19.6-ft lift was extrapolated from
the data and determined to be 11.0 min. The emptying time required to maintain
hawser forces of 5 tons or less with a 9-fi reverse lift was 7.0 min.

Summary, Type 2 design with VSV operations

Results of the experiments with the VSV revealed that acceptable chamber
performance was achieved with faster filling and emptying times than was
achieved with the constant-speed valve. The only exception was filling with the

19.6-1t lift and the ship in the chamber where the filling times were essentially the
same.

A plot of lift versus filling time for 15-ton hawser forces with the ship is
shown in Plate 98. With the 11-ft lift, the filling time to maintain hawser forces of
15 tons or less was reduced from 9.5 min with a constant-speed valve to 8.0 min
with the Type 4 VSV. The filling times were reduced for all lifts except the
19.6-ft lift. A comparison of the emptying results with the ship is shown in
Plate 99. The emptying times were up to 25 percent faster with the Type 11 VSV.

The filling results with the barges and the VSV are shown in Plate 100.
Filling was about 10 percent faster with the VSV for lifts up to 11 ft and was
determined to be more than 25 percent faster with a lift of 19.6 ft. The emptying
results (Plate 101) with the barges and VSV indicated the emptying times were
reduced from 10 to 40 percent over those determined with the constant-speed
valve depending on the lift. With an 11-ft lift, the emptying time was reduced
from 11.4 min with the constant-speed valve to 7.0 min with the VSV. Thisisa
reduction of almost 40 percent.

A significant improvement in chamber performance was observed with the
VSV especially during emptying operations. The hawser forces during
underemptying with the ship in the chamber were still noticeable although
reduced from those with the constant-speed valve.

Lock CoeffiCient for the Type 2 Design

A lock coefficient was computed from Equation 5 with the Type 2 design.
The valve operation curves for the 3-, 7-, 11-, and 19.6-ft normal lifts and 9-ft
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reverse lift with a constant-speed valve are shown in Plates 102 and 103,
respectively. These curves represent the filling and emptying times determined
for varying valve operations and lifts with the Type 2 design side port system.
The lock coefficients computed from Equation 5 for the Type 2 design side port
system were C;, = 0.88 for filling and C;, = 0.77 for emptying. These were
computed using the 11-ft lift.

Pressure Measurements with Type 2 Design

Pressures were measured at locations throughout the filling and emptying
system during steady flow conditions using piezometers. These measurements
were used to quantify loss coefficients for various components of the system.
Energy loss through each component is expressed as

2
H,-K 21g— ©)

where X is the loss coefficient for component i, and V' is the culvert velocity,
which is one-half of the total discharge divided by a culvert area of 18.25 ft by
15 ft. '

The total energy loss coefficient for the original and Type 2 design filling
systems K was determined to be 2.3 and 2.0, respectively. Distribution of this
sum by lock filling components is listed in the following tabulation:

- Loss Coefficient K

Component Original Design Type 2 Design
Intakes 0.4 0.2
Upstream culvert 0.2 0.1
Manifold 1.7 1.7

The total energy loss coefficient for the original and Type 2 design emptying
systems K was determined to be 2.5 and 1.8, respectively. Distribution of this

sum by lock filling components is listed in the following tabulation:

Loss Coefficient K|
Component Original Design Type 2 Design
Manifold 11 1.1
Culvert 0.5 0.2
Outlet 0.9 0.5

The loss coefficients show that the intake and outlet designs with the Type 2

design were improved over the original design.
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5 Sum‘mary and Conclusions

Evaluation of the proposed filling and efﬁptying system for the IHNC
replacement lock provided much information on lock filling and emptying
systems to the U.S. Army Corps of Engineers.

The pintle torque results verified that the sector gate and recess designs were
satisfactory for a 110-ft-wide lock. These designs were based on the Algiers gate
and recess designs for a 75-ft-wide chamber. The New Orleans District indicated
the pintle torque measurements were acceptable, and no attempts were made to
reduce the forces by modifying the gate shape. The torque measurements made
when the resisting torque, which represented the gate operating machinery, was
installed indicated the gate would not open or close rapidly with flow through the
chamber and with the head conditions evaluated.

Corps lock chamber performance guidance recommends that the end filling
and emptying systems should be used for very low lift projects (lifts less than
10 ft). The experiments performed with the original design end filling and
emptying system revealed that a lock filling time approaching 20 min was
required for a 7-ft lift. A similar time was required for emptying with this lift.
These times were determined for 18 barges drafted to 11 ft. Experiments to
evaluate barge location in the chamber were conducted with 15 barges drafted to
11 ft. The upstream longitudinal hawser force was lower when the downstream
end of the barges was closer to the lower pintle. Experiments with the 106-ft-
wide by 760-ft-long ship drafted to 36 ft showed that to achieve acceptable
chamber performance with a 7-ft lift, a filling time of 18 min was required. End
emptying experiments with the ship revealed that emptying times required to
achieve acceptable chamber performance were extremely long. With a 3-ft lift,
the acceptable emptying time was greater than 10 min. Acceptable chamber
performance was not achieved for normal lifts greater than 7 ft even with very
slow gate operations. The performance of the end emptying system was not
acceptable with a ship in the chamber.

The experiments conducted with a reverse lift of 9 ft with the barges and end
filling system showed that filling times were slower than for the normal lift
condition. This was also observed with the ship in the chamber. The emptying
time for the reverse lift and end emptying was similar to the normal lift time with
barges in the chamber. The end emptying time with the ship in the chamber and |
the reverse lift could not be compared since acceptable conditions were not
achieved with the normal lift.
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Experiments with the original design side port system provided performance
data with low lifts. The original design chamber was longer than the normal
1,270-ft-long side port system. This extra length was considered necessary for the
end filling and emptying system to help energy dissipation. The performance of
the original design was slower than desired. Comparison to guidance in the Corps
manuals was difficult since this guidance was based on barges drafted to 9 ft and
the barges were drafted to 11 ft in these experiments. The slower filling times
were due to the longer chamber and intake and outlet designs. The intakes and
outlets were not as efficient as a conventional manifold type design.

The New Orleans District decided additional chamber experiments were

- needed with the side port system and pintle-to-pintle chamber length of 1,270 ft.

The intake and outlet design were also changed to help reduce filling and
emptying times. These changes were designated the Type 2 design lock.
Chamber performance with the type 2 design was improved over the original
design side-port system. Filling times were reduced and maximum hawser forces
of 5 tons or less were obtained with lifts up to 19.6 ft with the barges in the
chamber. Faster filling times were also observed with the ship in the chamber.
The reverse lift experiments showed that the filling time was slower than the
filling time with the same normal lift. During emptying with the barges in the
chamber and the reverse lift, the emptying times were faster than for the same lift
under normal conditions. The same tendencies were observed with the ship in the
chamber although the filling time with a reverse lift of 9 ft was 13.4 min
compared to a filling time of 8.3 min with a normal lift of 9 ft. This was more
extreme than observed with the barges and the reverse lift (6.7 min normal lift
compared to 8.2 min reverse lift).

Evaluation of the Type 2 design lock based on hawser forces measured inside
the chamber showed that the maximum downstream and upstream longitudinal
hawser forces occurred during the initial portion (1 to 2 min) of the filling
operation. These values were reduced using slower valve times at the expense of
slowing down the filling operation. The same conditions were observed with the
barges in the chamber during emptying operations. With the ship in the chamber,
the maximum upstream and downstream longitudinal hawser forces also were
measured in the early portion of the filling operation. During emptying with the
ship in the chamber, the maximum downstream longitudinal hawser force
occurred in the early portion of the emptying operation. The maximum upstream
longitudinal hawser force occurred at the end of the emptying operation during
underemptying.

A VSV operation was tested to try to reduce the hawser forces. The logic was
to slow the valves initially and reduce the hawser forces early in the filling or

, emptying operation, then speed the valve up to minimize the overall filling or

emptying time. Of the VSV operations tested for filling, the Type 4 VSV was
most effective in reducing the hawser forces early in the operation. This valve

opetation consisted of using a constant speed for the first one-third of the total
time to open the valve to 17.5 percent and changing to a constant speed for the
final two-thirds of operation to open the valve to 100 percent.
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- The Type 11 VSV was the most effective of the VSVs tested during emptying
experiments. This operation consisted of a constant speed to open the valve to
17.5 percent in the first one-third of the total time and then opening the valve
using a constant speed to 80 percent in the final two-thirds of total time. The 80
percent was the radial travel of the gate and was equivalent to a 5/B value of
0.733. This operation reduced the high hawser forces in the initial portion of the
operation and eliminated the high upstream hawser forces during the
underemptying with the ship in the chamber.

The Type 2 design lock with the Type 4 VSV during filling operations and
Type 11 VSV during emptying operations provided the best hydraulic
performance of the designs tested. The filling and emptying times were
acceptable and the flow conditions at the intake and outlet were satisfactory. No
strong vortices were observed in the upper approach during filling with the 19.6-ft
head (largest discharge) and Type 2 design intake, and flow discharging from the
outlet spread uniformly into the outlet channel with the Type 2 design outlet. The
outlet design was a mirror image of the intake design shown in Plate 73.
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Table 1
Pintle Torque Measurements, ft-kips
Gate Opening, 9-ft Direct 9-ft Reverse 19.6-ft Direct 2-ft Direct
Head Head Head Head
2 558 911 1742 257
4 1784 736 1963 400
6 1866 -499 2342 310
8 1947 -1733 2721 221
10 2113 2815 3770 247
12 2279 -3896 4818 273
14 2292 4438 5266 329
18 2305 4978 5714 384
18 2334 5217 6162 415
20 2363 -5457 6561 446
22 2497 -5546 6961 446
24 2630 -5653 7380, 445
26 2786 -5718 477
28 2842 -5783 508
30 3099 -5827 546
32 3255 5871 583
34 3412 -5903 819
36 3568 -5934 654
as 3911 -5931 734
40 4254 -5928 814
42 4508 -5923 858
44 4941 5918 902
46 5284 -5066 951
48 5627 8015 999
50 6063 1048
52 6112 1097
54 6160 1131
56 -6208 1165
58 6257 1152
50 6305 1139
62 6354
64 6402
66 -6450
68 6499
70 6547
72 6585
74 6644
76 6692
78 6741
80 6789

Note: Direct Head - Lakeside El = +1.0

_ Reverse Head - Riverside EI= 0.0




Table 2

Filling Characteristics, Original Design, End Filling System, 18 Barges
with 11-ft Draft

Average Maximum Hawser Forces, tons

Upstream Downstream
Gate Longitudinal Transverse Transverse | Filling Time,
Lift, ft Schedule Upstream | Downstream | Right | Left | Right | Left min
3.0 E 9.8 -5.8 20 -0.8 1.5 -1.3 | 61
D 5.5 -5.0 1.9 -1.2 1.8 -16 | 6.4
A 2.8 2.9 1.6 -1.0 1.8 -1.8 | 10.1
7.0 D 19.7 -8.2 55 42 | 57 47 | 7.8
A 124 -5.5 43 40 | 43 -42 | 117
B 54 4.6 36 -3.7 | 31 -38 | 18.9
11.0 A 19.9 -6.0 6.3 77 (74 -7.0 | 124
B 11.2 -5.2 38 50 | 55 -41 | 19.9
Cc 8.4 6.1 43 4.1 48 -44 | 26.3
19.6 A 371 -10.0 8.1 118 | 7.9 -9.1 | 15.0
B 1 19.4 -11.6 6.4 -88 | 6.8 -65 | 216
Cc 14.8 -8.5 57 -9.1 8.4 -74 | 284
9-Reverse | A 124 57 22 -2.0 6.1 -21 1 13.2
B 8.7 47 1.2 -1.8 | 2.1 -1.8 | 19.9
C 6.2 4.4 2.0 -2.1 1.9 -27 | 256
Table 3

Emptying Characteristics, Original Design, End Emptying System,
18 Barges with 11-ft Draft

Average Maximum Hawser Forces, tons

Upstream Downstream

Gate Longitudinal Transverse Transverse | Emptying
Lift, ft Schedule ["ypstream | Downstream | Right | Left | Right | Left | Time, min
3.0 E 6.9 -8.5 1.0 -09 | 08 -1.0 | 6.1

D 49 -5.0 0.9 -10 1 1.0 -11 |73

A 29 -3.0 0.7 -1.0 | 0.9 -0.9 | 10.0
7.0 A 45 -5.9 1.5 -16 | 1.4 -1.5 | 129

B 46 -5.4 14 -1.5 | 1.7 -1.5 | 20.0

Cc 45 49 0.8 -14 |12 -12 | 255
11.0 A 7.3 -76 25 24 1 186 -1.7 | 1441

B 6.8 -6.9 24 -29 | 26 -28 | 209

c 6.9 -6.3 1.3 -21 |14 -1.6 | 26.7
19.6 o 12.1 -11.1 48 -39 | 3.8 -4.1 | 321
9-Reverse | A 6.1 -4.4 1.0 -20 | 1.7 -1.3 | 139

B 57 -39 1.4 17 | 17 -1.7 | 225

c 48 -2.3 1.4 22 | 20 -1.7 | 307




Table 4

Filling Characteristics, Original Desxgn End Filling System, 760- x
106- x 36-ft Ship

Average Maximum Hawser Forces, tons
Upstream Downstream | Filling

Gate Longitudinal Transverse Transverse | Time
Lift, ft Schedule "\joctream | Downstream Right | Left | Right | Left | Min
3.0 D 16.8 -31.0 1.0 -06 | 06 -06 | 6.7

A 75 -14.6 08 0.2 103 -0.5 | 107

B 486 -8.4 0.7 -04 |03 06 | 178
7.0 A 122 245 1.2 -14 1 04 -1.0 1121

B 7.2 -13.3 08 09 | 05 0.8 | 185

c 7.9 -8.6 0.9 04 | 05 -08 | 255
11.0 A 18.1 -31.9 1.3 -39 | 08 -3.0 | 130

B 104 -18.4 1.2 -27 {09 1.3 | 21.0

c 10.3 -11.3 1.0 -1.5 1 07 -1.0 | 284
9-Reverse | A 27.9 -13.8 18 32 | 11 83 | 129

B 228 7.5 06 -15 | 14 -26- | 187

c 224 -7.2 05 -16 | 1.0 -1.7 | 25.7

Table 5

Emptying Characteristics, Original Design, End Emptymg System,
760- x 106- x 36-ft Ship

Average Maximum Hawser Forces, tons

: Upstream Downstream | Emptying

Gate Longitudinal Transverse Transverse | Time,
Lift, ft Schedule |",stream | Downstream Right | Left | Right | Left | Min
3.0 D 16.8 -316 1.2 -11 116 07 | 69

A 11.0 -127 086 -0.7 | 1.1 0.7 | 106

1B 10.5 -7.4 04 08 | 08 06 | 165

7.0 A 17.1 -25.6 1.9 08 |34 | -07 ] 124

B 17.0 . -124 09 -12 1 18 0.7 | 19.1

c 17.2 -11.1 08 -15 113 -08 | 250
11.0 A 238 1 -40.1 3.0 -07 | 58 1.1 | 134

B 238 -18.8 16 -1.3 | 33 -09 | 203

Cc 24.0 -15.8 1.0 13122 -1.1 1262
9-Reverse | A 77 -45.1 1.1 -13 107 24 | 144

B 75 -25.8 1.1 07 | 08 1.7 | 228

C 6.3 -18.2 1.2 03107 -1.3 | 305




Table 6

Filling Characteristics, Original Design, Side Port System,
18 Barges with 11-ft Draft

Average Maximum Hawser Forces, tons

Gate Upstream Downstream | Filling
Operation Longitudina! Transverse Transverse | Time
Litt, ft min Upstream | Downstream | Right | Left | Right | Left min
3.0 1.0 6.5 6.2 1.1 -0.7 | 11 -09 | 35
20 4.1 45 09 08 | 1.1 -1.1 | 40
40 29 -3.8 1.0 -05 ] 0.9 -12 | 6.2
6.0 29 -39 0.9 -04 | 08 -09 | 6.3
7.0 40 48 -5.5 1.6 -09 | 1.2 -1.8 | 6.7
6.0 45 -5.3 1.2 -08 | 1.3 -09 | 7.8
8.0 39 4.8 1.0 -06 | 0.9 -0.7 | 91
10.0 3.2 -4.6 1.1 -06 | 0.9 -0.7 | 104
11.0 40 56 6.3 1.9 -16 | 1.6 -21 | 89
8.0 5.2 -6.1 1.3 -08 | 14 -1.2 |1 107
10.0 43 -6.0 1.1 -0.7 | 1.0 -14 | 120
12.0 4.8 6.2 1.1 -06 | 1.0 -1.0 | 13.2
19.6 40 9.0 -9.1 3.1 -18 | 1.9 -29 | 115
8.0 7.5 -8.9 1.9 -13 117 -14 | 133
12.0 6.4 -8.9 1.3 -1.1 ] 13 -14 | 152
16.0 6.9 -9.0 1.9 -13 | 16 -1.8 | 17.0
9-Reverse | 4.0 6.8 ~7.2 25 -1.7 | 2.0 22 | 7.3
8.0 46 -4.6 1.8 -11 |15 -1.7 | 91
10.0 4.1 4.8 1.7 -1.1 117 -1.9 | 103
12.0 42 4.2 14 -08 | 1.2 -1.2 | 111




Table 7

Emptying Characteristics, Original Design, Side Port System, 18

Barges with 11-ft Draft

Average Maximum Hawser Forces, tons

Gate Upstream Downstream | Emptying
Operation Longitudinal Transverse Transverse | Time,
Lift, ft min Upstream | Downstream | Right | Left | Right | Left | Min
3.0 10 86 -8.7 14 14 1 13 -14 136
20 5.2 -6.1 1.1 14 114 -1t ] 41
4.0 3.2 -4.2 1.0 13 118 -1 ] 5.2
8.0 31 -3.1 1.1 11113 -1.2 |1 82
7.0 4.0 50 -6.0 14 17 |17 -186 | 8.7
8.0 3.8 -5.1 12 14 | 18 -15 178
8.0 40 -4.6 1.3 -18 1 158 -14 1889
10.0 386 47 08 11114 08 | 100
1.0 4.0 8.5 76 17 23 |22 -20 | 104
80 54 -7.0 10 186 | 18 -1.8 | 104
10.0 4.8 8.4 1.1 -14 | 186 1.5 | 118
12.0 49 6.4 1.2 -14 | 17 14 1127
19.8 4.0 57 72 28 -3.3 133 -3.1 1137
8.0 5.0 -6.0 22 28 | 25 27 } 133
120 42 -5.5 14 201 20 -20 1152
16.0 4.0 -5.4 1.2 -19 1 19 -14 1 175
9-Reverse | 4.0 5.2 -4.9 11 . |-15 1] 18 15 178
8.0 46 =33 10 <18 | 15 -1.3 198
10.0 45 -3.2 12 -14 | 18 -1.58 1 109
12.0 486 -3.0 1.1 -15 1 186 -14 1120




Table 8

Filling Characteristics, Original Design, Side Port System, 760-ft
Ship with 36-ft Draft

Average Maximum Hawser Forces, tons

Gate Upstream Downstream { Filling
 Operation Longitudinal Transverse Transverse | Time
Lift, ft min Upstream | Downstream | Right | Left | Right | Left min
3.0 2.0 2238 -26.5 1.5 -15 ] 1.2 -15 | 38
4.0 11.1 -18.5 1.3 -1.1 1 09 -12 | 5.0
6.0 6.4 -15.2 14 -07 | 1.0 -1.1 | 61
8.0 57 -12.9 14 -06 | 1.0 11 [ 7.2
7.0 8.0 7.0 -185 1.7 -16 | 1.4 -1.7 | 88
10.0 6.2 -16.1 1.3 -13 112 -1.5 | 10.0
12.0 6.5 -15.3 1.2 -12 1 1.0 -1.3 | 114
14.0 6.3 -14.3 1.1 -09 | 0.8 -1.1 | 125
11.0 8.0 9.0 -21.8 2.0 27 |17 -23 | 103
10.0 8.6 -19.6 1.7 23 |17 23 | 115
12.0 8.4 -18.1 1.7 -16 | 15 -20 | 126
14.0 8.7 -17.4 1.2 -14 112 -1.5 | 141
15.0 10.0 113 -22.5 1.8 25120 27 | 127
12.0 117 214 1.6 -20 | 1.8 -23 | 137
14.0 11.8 -20.3 1.3 -19 | 1.8 24 | 149
16.0 116 -20.3 15 -16 | 1.7 -23 | 16.2
9-Reverse | 8.0 119 -26.2 15 -3.0 | 28 -21 |88
10.0 8.6 -22.5 16 29 | 22 -24 | 101
12.0 8.2 -20.3 1.3 -20 | 17 -16 | 111
14.0 7.7 -18.6 1.5 20 112 -1.5 | 121




Table 9
Emptying Characteristics, Original Design, Side Port System ?Gﬁ-ft
Ship with 36-ft Draft
Average Maximum Hawser Forces, tons
Gate Upstream Downstream | Emptying
Operation Longitudinal Transverse Transverse | Time,
Lift, ¢ min Upstream | Downstream | Right | Left | Right | Left min
3.0 20 15.0 300 6.0 -17 |1 389 -16 | 4.1
40 154 -20.4 39 09 | 28 -07 | 51
8.0 1 118 -15.8 0.8 09128 -0.7 | 62
80 94 -12.8 0.7 -10 113 08 172
7.0 8.0 134 -17.1 27 -1.3 123 -1.2 | 9.0
100 12.1 -154 1.2 -14 | 18 -12 | 1041
120 94 -13.8 1.0 111 15 -1.0 | 1.2
14.0 8.1 -13.1 08 1.0 | 1.2 -0.8 | 123
11.0 8.0 1.5 219 15 -14 119 -12 | 1086
10.0 1186 - -19.8 15 13118 -1.2 | 1186
12.0 1086 -18.5 1.3 -14 118 -12 1128
14.0 94 -17.8 10 12 1 14 -1.2 | 140
15.0 10.0 14.0 -242 14 -13 118 -1.5 1 133
12.0 127 =223 12 -1.0 | 1.8 12 | 142
14.0 118 214 12 -1t ] 18 -14 | 158
16.0 120 -21.1 1.1 13 1 14 -12 | 171
9-Reverse | 8.0 87 -17.7 08 12 113 -20 | 98
100 118 -18.1 09 09 112 -20 | 104
120 9.1 -16.7 11 |09 {12 -20 | 113
14.0 8.8 -15.8 1.1 09 110 1.9 | 124
Table 10

Effects of Increased Submergence Grlgmal Design, End Filling
and Emptying System, 7-ft Lift

- Operation Submergence, ft

Ri\cersuie
El

Lakeside

“El

Operation Time for Acceptable
Hawser Forces, min

201025

Faiimg 40

20 to 25

45 12.0 50 134
Emptying 40 7.0 0.0 n
45 12.0 5.0 !

* 15-ton hawser forces were not achieved.




Table 11
Effects of Increased Submergence, Side Port Filling and Emptying
System, Original Design, 760-ft Ship with 36-ft Draft

Operation Time for

Lakeside
A tabl ,
Operation Submergence, ft | Riverside El | El mti:;:ep @ Hawser Forces
Filing . [ 40 3.0 0.0 6.2
45 8.0 5.0 43
Emptying 40 3.0 0.0 6.5
8.0 5.0 53
Filling 115

Emptying 40 7.0 0.0

E

Filling 40 11.0 0.0 |
: 45 16.0 5.0 12.7

Emptying 40 11.0 0.0 K
45 16.0 5.0 12.9

' 15-ton hawser forces were not achieved.




Table 12

Filling Characteristics, Type 2 Design, 18 Barges with 11-ft Draft

Valve

Average Maximum Hawser Forces, tons

Upstream Downstream Fil%ing
Operation Longitudinal Transverse -| Transverse | Time
Lift, ¢ min Upstream | Downstream | Right | Left | Right | Left min
3.0 1.0 74 7.2 1.5 111186 -13 | 32
20 43 47 0.9 -07 | 0.9 08 | 38
4.0 22 -3.1 09 -05 | 0.9 -0.8 | 49
60 2.1 2.8 0.8 -06 | 0.9 -09 | 61
7.0 1.0 111 -10.1 1.1 -10 1 07 09 | 45
20 57 5.6 1.1 08 ] 08 -07 | 51
4.0 33 4.7 1.2 11112 -1.2 | 57
6.0 24 -3.9 1.6 -1.0 | 15 23 | 6.9
8.0 1.9 =34 1.9 -16 | 1.3 -19 | 82
10.0 21 34 20 05 |04 <19 | 94
1.0 20 7.8 8.3 1.2 -1.1 108 -10 | 639
40 143 5.7 1.0 -10 1 08 08 |77
6.0 34 5.1 0.9 -05 | 06 0.8 | 86
8.0 33 -47 1.3 -0.7 | 0.9 -1.3 | 96
10.0 24 -4.0 1.0 05 105 -1.0 | 108
196 80 47 64 13 08 | 10 -14 | 120
120 34 57 18 09} 12 -1.3 | 14.1
16.0 37 5.0 1.0 07 |09 09 | 182
9-Reverse | 4.0 | -7.7 7.0 1.3 -09 | 0.9 -1.9 | 641
8.0 -6.0 46 1.2 -04 | 06 -1.1 | 82
10.0 -5.8 4.0 1.3 06 | 07 -14 | 94
12.0 59 43 1.1 06 | 08 -12 | 105




Table 13

Emptying Characteristics, Type 2 Design, 18 Barges with 11-ft Draft

Average Maximum Hawser Forces, tons’

Valve Upstream Downstream | Emptying
Operation Longitudinal Transverse Transverse | Time,
Lift, ft min Upstream | Downstream | Right | Left | Right | Left | ™MD
3.0 1.0 8.0 -9.4 0.5 05| 05 -03 | 35
20 53 -6.5 0.6 -04 | 06 -04 | 40
4.0 36 -4.5 0.7 -04 | 06 -05 | 5.1
6.0 23 -3.9 0.5 -03 |03 -03 | 6.0
7.0 1.0 12.0 -14.0 1.2 -14 | 0.8 -09 | 44
20 8.7 -9.6 1.5 -1.0 | 0.9 -09 | 5.0
40 4.1 -6.4 06 -0.7 | 0.8 -06 | 6.0
6.0 3.7 -5.6 06 06 | 0.7 -07 | 7.0
8.0 3.9 -5.1 1.6 -18 | 1.0 -1.8 | 8.2
10.0 42 49 1.6 -18 | 05 -1.9 | 91
11.0 20 10.0 -11.4 0.6 1.1 | 07 -06 | 64
4.0 54 -7.7 0.6 -08 | 0.7 01|75
6.0 |48 6.9 06 0.8 | 1.0 08 |85
8.0 45 -6.6 0.8 -1.0 | 1.0 -09 | 94
10.0 44 6.1 06 -07 | 0.9 -06 | 106
12.0 4.4 -6.0 0.7 -06 | 08 0.7 | 11.8
196 6.0 5.2 -8.3 0.5 -12 | 0.8 -0.8 | 104
8.0 5.1 7.7 0.6 -1.0 | 09 07 | 119
12.0 43 -7.1 0.9 08 ]09 -|-06 | 142
16.0 3.4 -5.3 0.7 -08 | 08 -08 | 16.0
9-Reverse | 4.0 -5.2 43 -0.6 0.7 | 11 0.5 6.9
8.0 -4.1 32 -0.8 05 | -1.0 06 | 9.0
10.0 -3.5 28 -0.7 0.7 -1.0 0.7 102
12.0 -3.4 2.8 -0.6 0.6 -0.8 0.6 115




Tabie 14

Filling Charactéristics, Type 2 Design, 760-ft Ship with 36-ft Draft

Average Maximum Hawser Forces, tons

Valve Upstream Downstream | Filling
Operation Longitudinal Transverse Transverse | Time,
Lift, t min Upstream | Downstream | Right | Left | Right | Left | Min
3.0 20 220 234 15 -08 | 0.7 -1.5 | 40
‘ 40 1186 -1486 1.1 05 | 09 -1.1 | 5.0
7.0 73 96 1.3 08 | 11 -12 |70
7.0 40 12.3 207 1.7 -1.0 | 1.2 -18 | 55
7.0 7.5 -146 1.1 10 114 -12 173
8.0 57 -133 1.3 -1.0 1 15 -1.3 | 80
11.0 7.0 86 -16.5 14 12 1 1.7 -1.6 | 82
8.0 7.8 -15.8 1.5 -13 118 -15 1 9.0
10.0 - 66 -14.3 1.5 -14 ] 20 -16 | 100
15.0 10.0 78 -15.5 17 -18 | 21 -1.8 | 1086
12.0 74 -15.1 1.5 -1.8 | 21 -1.8 | 118
14.0 82 -14.1 1.4 -18 ] 18 -1.7 | 128
1986 10.0 8.1 7.7 1.9 21128 23 112.8
) 12.0 8.8 -18.3 1.9 24 | 28 -24 | 135
14.0 85 -16.0 1.8 20 |22 21 | 145
16.0 10.2 -15.7 1.8 21120 -22 | 155
S-Reverse | 8.0 58 -26.0 22  }-22 )23 20 177
12.0 53 -20.4 2.1 -18 122 -18 | 98
14.0 55 -18.1 1.6 -16 | 1.9 -14 1 104




Table 15

Emptying Characteristics, Type 2 Design, 760-ft Ship with 36-ft Draft -

Average Maximum Hawser Forces, tons

Valve Upstream Downstream | Emptying
Operation Longitudinal Transverse Transverse | Time,
Lift, ft min Upstream | Downstream | Right | Left | Right | Left | ™
3.0 20 18.8 -27.8 0.9 08 | 05 -1.0 | 3.9
40 154 -19.9 0.9 -08 | 0.8 -09 | 61
7.0 124 -14.5 1.1 -09 | 09 -12 | 70
7.0 4.0 21.2 -25.7 1.5 11108 -1.5 | 59
7.0 18.8 -18.6 1.3 -1.1 ] 141 -14 |76
8.0 175 -18.5 1.4 -1.0 | 1.1 -1.3 | 8.0
10.0 14.8 -17.6 1.1 09 | 11 -09 | 9.0
12.0 12.8 -17.0 1.1 -t0 | 1.0 -1.0 | 9.9
11.0 7.0 18.3 -21.2 1.6 1.0 |1 09 -16 | 8.6
8.0 19.5 -20.9 1.3 -12 | 1.0 -16 | 9.1
10.0 18.1 -18.9 1.2 -1.0 | 11 -1.3 | 10.2
14.0 -17.2 135 1.2 09 | 09 -12 | 123
15.0 10.0 19.4 -18.9 1.3 -1.5 | 1.0 -16 | 110
12.0 17.3 -18.7 1.5 1.1 1141 -1.5 | 12.0
14.0 15.0 -16.7 1.3 1.1 1 1.0 -1.4 | 13.0
16.0 8.5 -15.8 1.3 -13 | 0.9 -1.6 | 143
19.6 10.0 17.3 -18.3 1.8 -1.1 1141 -1.8 | 123
12.0 16.6 . -16.8 17 -1.1 | 0.9 -1.7 |} 133
14.0 15.9 -15.3 .15 -08 | 08 -1.7 | 144
16.0 144 -15.1 1.5 -08 | 0.8 -16 | 154
9-Reverse | 8.0 10.9 -18.5 20 <14 1.2 20 | 79
120 94 -15.0 1.0 -09 | 09 -1.0 | 9.7
14.0 8.5 -14.3 0.8 -08 | 08 -11 | 105




Table 16
Filling Character;stlcs Type 2 Design, Type 4 VSV 760-ft Ship with 36-ft
Draft
Average Maximum Hawser Forces, tons

Valve Upstream Downstream | Filling

Operation Longitudinal Transverse Transverse Time,
Lift, ft min Upstream | Downstream | Right | Left | Right | Left | ™in
3.0 3.0 14.1 .| -153 0.9 -08 | 08. -1.3 | 42

4.0 123 -11.2 0.8 -0.7 |1 08 -1.0 | 46
7.0 30 204 | -208 20 -13 113 -28 | 55

40 14.5 -14.9 14 11 1 14 -17 |62
110 40 146 1-17.3 28 25 | 24 -33 {70

6.0 94 -14.8 18 -20 |21 |-16 |82
19.6 12.0 118 -16.7 23 22 |19 -1.8 | 15.0

14.0 10.6 -16.0 1.9 22 | 20 -1.6 | 16.0

16.0 117 -16.5 1.7 23 |1 20 -14 | 174
9-Reverse | 12.0 7.4 -16.3 24 -12 |12 21 1 115

14.0 8.7 -15.7 13 -1.2 | 158 -13 | 122

16.0 7.8 -16.4 1.1 -1.8 | 1.5 -1.5 | 132
Table 17
Emptying Characteristics, 'fype 2 Design, Type 11 VSV, 760-ft Sh;p
with 36-ft Draft ;

Average Maximum Hawser Forces, tons

Valve - . Upstream Downstream | Emptying

Operation Longitudinal Transverse Transverse | Time,
Lift, ft min Upstream | Downstream | Right | Left | Right | Left | Min
3.0 3.0 12.7 -15.9 1.0 -1.1 1 10 -12 1 49

4.0 124 -10.3 1.1 2.1 1 1.0 -22 | 55
7.0 3.0 “13.0 -20.6 14 14 | 13 -16 | 6.8

4.0 13.5 -14.6 15 43 111 -15 180
11.0 40 11.1 -17.2 15 -14 112 -16 | 84

6.0 118 -15.2 186 -12 1 12 <15 | 88
19.6 6.0 10.1 | -15.8 17 1 1 -1.5 | 124

8.0 10.0 -14.1 1.8 -09 | 09 -1.9 | 136

10.0 9.7 -13.0 1.7 0.7 | 11 -1.5 | 147

12.0 10.0 -12.2 18 -09 | 11 14 | 160
9-Reverse | 3.0 8.8 -16.8 0.8 09 113 -098 | 87

4.0 9.5 -13.8 0.8 12 114 -1.0 | 7.3

6.0 94 -12.5 09 -08 | 1.0 09 | 9.0

8.0 14.0 -12.0 0.9 52 ] 09 -08 | 97

12.0 8.0 - -10.7 0.7 09 | 08 -06 | 119




Table 18
Filling Characteristics, Type 2 Design, Type 4 VSV, 18 Barges with
11-ft Draft
Average Maximum Hawser Forces, tons
Valve i Upstream Downstream | Filling
Operation Longitudinal Transverse Transverse | Time
Lift, ft min Upstream | Downstream | Right | Left | Right | Left | MiP
3.0 1.0 7.4 -5.4 0.3 -06 | 0.5 -03 | 33
20 2.7 -3.5 0.3 -05 | 0.4 -03 | 3.9
7.0 1.0 12.5 -8.3 0.6 -0.8 | 0.4 -05 | 43
20 5.2 -5.0 06 -05 | 0.6 -05 | 4.8
4.0 34 4.1 05 -04 | 04 -05 | 57
11.0 20 54 -6.2 1.1 -08 | 0.8 -07 | 6.3
4.0 3.8 -5.1 0.8 -05 | 06 -06 |75
19.6 8.0 5.3 -6.2 1.1 -0.7 | 0.8 -0.8 | 105
10.0 44 4.7 0.8 -06 | 06 06 | 120
9-Reverse | 4.0 53 5.4 1.0 -04 | 12 -04 | 6.9
6.0 3.0 -3.9 0.7 -04 | 0.8 -04 | 7.9
Table 19

Emptying Characteristics, Type 2 Design, Type 11 VSV, 18 Barges

with 11-ft Draft

Average Maximum Hawser Forces, tons
Valve Upstream Downstream | Emptying
Operation Longitudinal Transverse Transverse | Time,
Lift, ft min Upstream | Downstream | Right | Left | Right | Left | Min
3.0 1.0 6.1 -5.4 04 09 | 06 -06 | 3.9
20 31 -3.0 04 -0.7 | 06 04 | 45
7.0 1.0 7.9 -8.0 0.7 07 | 05 05 | 5.2
20 34 -4.0 0.8 -0.8 | 0.8 -06 | 5.8
40 29 -36 0.6 -04 103 -05 | 6.8
11.0 1.0 7.2 -9.0 09 -0.8 | 06 -06 | 6.5
20 43 -4.2 07 -08 | 0.7 -06 | 7.1
19.6 6.0 29 -4.3 0.4 -1.1 1 05 -04 | 121
10.0 2.8 -34 0.4 -0.7 | 06 -0.2 | 14.2
9-Reverse | 2.0 47 -58 0.8 0.7 | 06 -06 | 6.4
40 35 -4.6 1.1 -08 | 1.5 11174
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